knitr::opts_chunk$set(message = FALSE, warning = FALSE, comment = NA,
fig.width = 6.25, fig.height = 5)
library(ANCOMBC)
library(tidyverse)
Sparse Estimation of Correlations among Microbiomes (SECOM) (Lin, Eggesbø, and Peddada 2022) is a methodology that aims to detect both linear and nonlinear relationships between a pair of taxa within an ecosystem (e.g., gut) or across ecosystems (e.g., gut and tongue). SECOM corrects both sample-specific and taxon-specific biases and obtains a consistent estimator for the correlation matrix of microbial absolute abundances while maintaining the underlying true sparsity. For more details, please refer to the SECOM paper.
Download package.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ANCOMBC")
Load the package.
The HITChip Atlas dataset contains genus-level microbiota profiling with HITChip for 1006 western adults with no reported health complications, reported in (Lahti et al. 2014). The dataset is also available via the microbiome R package (Lahti et al. 2017) in phyloseq (McMurdie and Holmes 2013) format.
data(atlas1006)
# Subset to baseline
tse = atlas1006[, atlas1006$time == 0]
# Re-code the bmi group
tse$bmi = recode(tse$bmi_group,
obese = "obese",
severeobese = "obese",
morbidobese = "obese")
# Subset to lean, overweight, and obese subjects
tse = tse[, tse$bmi %in% c("lean", "overweight", "obese")]
# Create the region variable
tse$region = recode(as.character(tse$nationality),
Scandinavia = "NE", UKIE = "NE", SouthEurope = "SE",
CentralEurope = "CE", EasternEurope = "EE",
.missing = "unknown")
# Discard "EE" as it contains only 1 subject
# Discard subjects with missing values of region
tse = tse[, ! tse$region %in% c("EE", "unknown")]
print(tse)
class: TreeSummarizedExperiment
dim: 130 873
metadata(0):
assays(1): counts
rownames(130): Actinomycetaceae Aerococcus ... Xanthomonadaceae
Yersinia et rel.
rowData names(3): Phylum Family Genus
colnames(873): Sample-1 Sample-2 ... Sample-1005 Sample-1006
colData names(12): age sex ... bmi region
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
rowLinks: NULL
rowTree: NULL
colLinks: NULL
colTree: NULL
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(tse), assay_name = "counts",
tax_level = "Phylum", pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(tse), assay_name = "counts",
tax_level = "Phylum", pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
heat_linear_th = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Thresholding)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_th
corr_linear = res_linear$corr_fl
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
heat_linear_fl = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Filtering)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_fl
corr_dist = res_dist$dcorr_fl
cooccur_dist = res_dist$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_dist[cooccur_dist < overlap] = 0
df_dist = data.frame(get_upper_tri(corr_dist)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_dist$var1, df_dist$var2))
df_dist$var1 = factor(df_dist$var1, levels = tax_name)
df_dist$var2 = factor(df_dist$var2, levels = tax_name)
heat_dist_fl = df_dist %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Distance (Filtering)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_dist_fl
To compute correlations whithin and across different ecosystems, one needs to make sure that there are samples in common across these ecosystems.
# Select subjects from "CE" and "NE"
tse1 = tse[, tse$region == "CE"]
tse2 = tse[, tse$region == "NE"]
# Rename samples to ensure there is an overlap of samples between CE and NE
colnames(tse1) = paste0("Sample-", seq_len(ncol(tse1)))
colnames(tse2) = paste0("Sample-", seq_len(ncol(tse2)))
print(tse1)
class: TreeSummarizedExperiment
dim: 130 578
metadata(0):
assays(1): counts
rownames(130): Actinomycetaceae Aerococcus ... Xanthomonadaceae
Yersinia et rel.
rowData names(3): Phylum Family Genus
colnames(578): Sample-1 Sample-2 ... Sample-577 Sample-578
colData names(12): age sex ... bmi region
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
rowLinks: NULL
rowTree: NULL
colLinks: NULL
colTree: NULL
class: TreeSummarizedExperiment
dim: 130 181
metadata(0):
assays(1): counts
rownames(130): Actinomycetaceae Aerococcus ... Xanthomonadaceae
Yersinia et rel.
rowData names(3): Phylum Family Genus
colnames(181): Sample-1 Sample-2 ... Sample-180 Sample-181
colData names(12): age sex ... bmi region
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
rowLinks: NULL
rowTree: NULL
colLinks: NULL
colTree: NULL
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(CE = tse1, NE = tse2),
assay_name = c("counts", "counts"),
tax_level = c("Phylum", "Phylum"), pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(CE = tse1, NE = tse2),
assay_name = c("counts", "counts"),
tax_level = c("Phylum", "Phylum"), pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_linear_th = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Thresholding)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_th
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_linear_fl = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Filtering)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_fl
corr_dist = res_dist$dcorr_fl
cooccur_dist = res_dist$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_dist[cooccur_dist < overlap] = 0
df_dist = data.frame(get_upper_tri(corr_dist)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_dist$var1, df_dist$var2))
df_dist$var1 = factor(df_dist$var1, levels = tax_name)
df_dist$var2 = factor(df_dist$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_dist_fl = df_dist %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Distance (Filtering)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_dist_fl
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS
Matrix products: default
BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] caret_6.0-93 lattice_0.20-45 DT_0.26 forcats_0.5.2
[5] stringr_1.5.0 dplyr_1.0.10 purrr_0.3.5 readr_2.1.3
[9] tidyr_1.2.1 tibble_3.1.8 ggplot2_3.4.0 tidyverse_1.3.2
[13] ANCOMBC_2.0.2
loaded via a namespace (and not attached):
[1] utf8_1.2.2 tidyselect_1.2.0
[3] lme4_1.1-31 RSQLite_2.2.19
[5] htmlwidgets_1.6.0 grid_4.2.2
[7] BiocParallel_1.32.4 gmp_0.6-9
[9] pROC_1.18.0 munsell_0.5.0
[11] ScaledMatrix_1.6.0 codetools_0.2-18
[13] interp_1.1-3 future_1.30.0
[15] withr_2.5.0 colorspace_2.0-3
[17] Biobase_2.58.0 energy_1.7-10
[19] highr_0.9 knitr_1.41
[21] rstudioapi_0.14 stats4_4.2.2
[23] SingleCellExperiment_1.20.0 DescTools_0.99.47
[25] listenv_0.9.0 labeling_0.4.2
[27] MatrixGenerics_1.10.0 Rdpack_2.4
[29] emmeans_1.8.3 GenomeInfoDbData_1.2.9
[31] farver_2.1.1 bit64_4.0.5
[33] parallelly_1.33.0 coda_0.19-4
[35] vctrs_0.5.1 treeio_1.22.0
[37] generics_0.1.3 TH.data_1.1-1
[39] ipred_0.9-13 xfun_0.35
[41] timechange_0.1.1 R6_2.5.1
[43] doParallel_1.0.17 GenomeInfoDb_1.34.4
[45] ggbeeswarm_0.7.1 rsvd_1.0.5
[47] bitops_1.0-7 cachem_1.0.6
[49] DelayedArray_0.24.0 assertthat_0.2.1
[51] scales_1.2.1 multcomp_1.4-20
[53] nnet_7.3-18 googlesheets4_1.0.1
[55] beeswarm_0.4.0 rootSolve_1.8.2.3
[57] gtable_0.3.1 beachmat_2.14.0
[59] globals_0.16.2 lmom_2.9
[61] sandwich_3.0-2 timeDate_4021.107
[63] rlang_1.0.6 splines_4.2.2
[65] lazyeval_0.2.2 ModelMetrics_1.2.2.2
[67] gargle_1.2.1 broom_1.0.2
[69] checkmate_2.1.0 modelr_0.1.10
[71] yaml_2.3.6 reshape2_1.4.4
[73] crosstalk_1.2.0 backports_1.4.1
[75] Hmisc_4.7-2 lava_1.7.0
[77] tools_4.2.2 ellipsis_0.3.2
[79] decontam_1.18.0 jquerylib_0.1.4
[81] RColorBrewer_1.1-3 proxy_0.4-27
[83] BiocGenerics_0.44.0 MultiAssayExperiment_1.24.0
[85] Rcpp_1.0.9 plyr_1.8.8
[87] base64enc_0.1-3 sparseMatrixStats_1.10.0
[89] zlibbioc_1.44.0 RCurl_1.98-1.9
[91] rpart_4.1.19 TreeSummarizedExperiment_2.6.0
[93] deldir_1.0-6 viridis_0.6.2
[95] S4Vectors_0.36.1 zoo_1.8-11
[97] SummarizedExperiment_1.28.0 haven_2.5.1
[99] ggrepel_0.9.2 cluster_2.1.4
[101] fs_1.5.2 DECIPHER_2.26.0
[103] magrittr_2.0.3 data.table_1.14.6
[105] lmerTest_3.1-3 reprex_2.0.2
[107] googledrive_2.0.0 mvtnorm_1.1-3
[109] matrixStats_0.63.0 gsl_2.1-7.1
[111] hms_1.1.2 evaluate_0.19
[113] xtable_1.8-4 jpeg_0.1-10
[115] readxl_1.4.1 IRanges_2.32.0
[117] gridExtra_2.3 compiler_4.2.2
[119] scater_1.26.1 crayon_1.5.2
[121] minqa_1.2.5 htmltools_0.5.4
[123] tzdb_0.3.0 mgcv_1.8-41
[125] Formula_1.2-4 expm_0.999-6
[127] Exact_3.2 lubridate_1.9.0
[129] DBI_1.1.3 dbplyr_2.2.1
[131] MASS_7.3-58.1 boot_1.3-28.1
[133] Matrix_1.5-3 permute_0.9-7
[135] cli_3.4.1 rbibutils_2.2.11
[137] gower_1.0.0 parallel_4.2.2
[139] GenomicRanges_1.50.2 pkgconfig_2.0.3
[141] numDeriv_2016.8-1.1 foreign_0.8-84
[143] recipes_1.0.3 scuttle_1.8.3
[145] xml2_1.3.3 foreach_1.5.2
[147] hardhat_1.2.0 vipor_0.4.5
[149] bslib_0.4.2 DirichletMultinomial_1.40.0
[151] rngtools_1.5.2 XVector_0.38.0
[153] prodlim_2019.11.13 estimability_1.4.1
[155] mia_1.6.0 rvest_1.0.3
[157] CVXR_1.0-11 doRNG_1.8.2
[159] yulab.utils_0.0.5 digest_0.6.31
[161] vegan_2.6-4 Biostrings_2.66.0
[163] rmarkdown_2.19 cellranger_1.1.0
[165] tidytree_0.4.2 htmlTable_2.4.1
[167] gld_2.6.6 DelayedMatrixStats_1.20.0
[169] nloptr_2.0.3 lifecycle_1.0.3
[171] nlme_3.1-161 jsonlite_1.8.4
[173] BiocNeighbors_1.16.0 viridisLite_0.4.1
[175] fansi_1.0.3 pillar_1.8.1
[177] fastmap_1.1.0 httr_1.4.4
[179] survival_3.4-0 glue_1.6.2
[181] png_0.1-8 iterators_1.0.14
[183] bit_4.0.5 class_7.3-20
[185] stringi_1.7.8 sass_0.4.4
[187] blob_1.2.3 BiocSingular_1.14.0
[189] latticeExtra_0.6-30 memoise_2.0.1
[191] Rmpfr_0.8-9 future.apply_1.10.0
[193] irlba_2.3.5.1 e1071_1.7-12
[195] ape_5.6-2
Lahti, Leo, Jarkko Salojärvi, Anne Salonen, Marten Scheffer, and Willem M De Vos. 2014. “Tipping Elements in the Human Intestinal Ecosystem.” Nature Communications 5 (1): 1–10.
Lahti, Leo, Sudarshan Shetty, T Blake, J Salojarvi, and others. 2017. “Tools for Microbiome Analysis in R.” Version 1: 10013.
Lin, Huang, Merete Eggesbø, and Shyamal Das Peddada. 2022. “Linear and Nonlinear Correlation Estimators Unveil Undescribed Taxa Interactions in Microbiome Data.” Nature Communications 13 (1): 1–16.
McMurdie, Paul J, and Susan Holmes. 2013. “Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data.” PloS One 8 (4): e61217.