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1. Drawing approximations to the area under a graph by rectangles

1.1. Description

We recall here an application in Calculus. Let f(x) be a function, defined and bounded on the
interval [a, b]. If f is integrable (in Riemann sense) on [a, b], then its integration on this interval is∫ b

a
f(x)dx = lim

‖P‖→0

n∑
i=1

f(ξi)∆xi,

where P : a = x0 < x1 < · · · < xn = b, ∆xi = xi − xi−1, ξi ∈ [xi−1, xi], i = 1, 2, . . . , n, and
‖P‖ = max{∆xi : i = 1, 2, . . . , n}. Hence, when ‖P‖ is small enough, we may have an approximation

I =
∫ b

a
f(x)dx ≈

n∑
i=1

f(ξi)∆xi. (1)

Because I is independent to the choice of the partition P and of the ξi, we may divide [a, b] into n
subintervals with equal length and choose ξi = (xi + xi−1)/2. Then, I can be approximately seen as
the sum of areas of the rectangles with sides f(ξi) and ∆xi.

We will make a drawing procedure to illustrate the approximation (1). Firstly, we establish
commands to draw the sum of rectangles, like the area under piecewise-constant functions (called

∗The author of this package is Timothy Van Zandt (email address: tvz@econ.insead.fr).
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step shape, for brevity). The choice here is a combination of the macros \pscustom (to join hori-
zontal segments, automatically) and \multido, of course. In particular, the horizontal segments are
depicted within the loop \multido by

\psplot[settings]{xi−1}{xi}{f(ξi)}

The \pscustom will join these segments altogether with the end points (a, 0) and (b, 0), to make the
boundary of the step shape. Then, we draw the points (ξi, f(ξi)), i = 1, 2, . . . , n, and the dotted
segments between these points and the points (ξi, 0), i = 1, 2, . . . , n, by

\psdot[algebraic,...](*{ξi} {f(x)}),

\psline[algebraic,linestyle=dotted,...](ξi,0)(*{ξi} {f(x)}),

where we use the structure (*{value} {f(x)}) to obtain the point (ξi, f(ξi)). Finally, we draw
vertical segments to split the step shape into rectangular cells by

\psline[algebraic,...](xi,0)(*{xi} {f(x−∆xi/2)})
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Figure 1: Steps to make the drawing procedure.

We can combine the above steps to make a procedure whose calling sequence consists of main
parameters a, b, f and n, and dependent parameters xi−1, xi, ξi, f(ξi) and f(x ± ∆xi/2). For
instant, let us consider the approximations to the integration of f(x) = sin x− cosx on the interval
[−2, 3] in the cases of n = 5 and n = 20. Those approximations are given in Figure 2.
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Figure 2: Approximations to the integration of f(x) = sin x− cosx on [−2, 3].

In fact, we can make a procedure, say RiemannSum, whose calling sequence is of the form:

\RiemannSum{a}{b}{f(x)}{n}{xini}{xend}{xchoice}{f(x+ ∆xi/2)}{f(x−∆xi/2)},

where x0 = a and for each i = 1, 2 . . . , n:

xi = a+ b− a
n

i, ∆xi = xi − xi−1 = b− a
n

,

xini = x0 + ∆xi, xend = x1 + ∆xi, xchoice = xini + xend
2 = x0 + x1

2 + ∆xi.

Note that xini, xend and xchoice are given in such forms to be suitable to variable declaration in
\multido. They are nothing but xi−1, xi and ξi, respectively, at the step i-th in the loop.

Tentatively, in PSTricks language, the definition of RiemannSum is suggested to be

\def\RiemannSum#1#2#3#4#5#6#7#8#9{%
\psplot[linecolor=blue]{#1}{#2}{#3}
\pscustom[linecolor=red]{%
\psline{-}(#1,0)(#1,0)
\multido{\ni=#5,\ne=#6}{#4}
{\psline(*{\ni} {#8})(*{\ne} {#9})}}
\multido{\ne=#6,\nc=#7}{#4}
{\psdot(*{\nc} {#3})
\psline[linestyle=dotted,dotsep=1.5pt](\nc,0)(*{\nc} {#3})
\psline[linecolor=red](\ne,0)(*{\ne} {#9})}}

1.2. Examples

We just give here two more examples for using the drawing procedure with ease. In the first example,
we approximate the area under the graph of the function f(x) = x− (x/2) cosx+ 2 on the interval
[0, 8]. To draw the approximation, we try the case n = 16; thus x0 = 0 and for each i = 1, . . . , 16,
we have xi = 0.5 i, ∆xi = 0.5, xini = 0.00 + 0.50, xend = 0.50 + 0.50 and xchoice = 0.25 + 0.50.

To get Figure 3, we have used the following LATEX code:
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Figure 3: An approximation to the area under the graph of f(x) = x− (x/2) cosx+ 2 on [0, 8].

\begin{pspicture}(0,0)(4.125,5.5)
\psset{plotpoints=500,algebraic,dotsize=2.5pt,unit=0.5}
\RiemannSum{0}{8}{x-(x/2)*cos(x)+2}{16}{0.00+0.50}{0.50+0.50}{0.25+0.50}
{x+0.25-((x+0.25)/2)*cos(x+0.25)+2}{x-0.25-((x-0.25)/2)*cos(x-0.25)+2}
\psaxes[ticksize=2.2pt,labelsep=4pt]{->}(0,0)(8.5,11)
\end{pspicture}

In the second example below, we will draw an approximation to the integration of f(x) = x sin x
on [1, 9]. Choosing n = 10 and computing parameters needed, we get Figure 4, mainly by the
command

\RiemannSum{1}{9}{x sin x}{10}{1.00 + 0.80}{1.80 + 0.80}{1.40 + 0.80}

{(x+ 0.4) sin(x+ 0.4)}{(x− 0.4) sin(x− 0.4)}

in the drawing procedure.

2. Drawing the vector field of an ordinary differential equation of order one

2.1. Description

Let us consider the differential equation

dy

dx
= f(x, y). (2)

At each point (x0, y0) in the domain D of f , we will put a vector v with slope k = f(x0, y0). If
y(x0) = y0, then k is the slope of the tangent to the solution curve y = y(x) of (2) at (x0, y0). The
v’s make a vector field and the picture of this field would give us information about the shape of
solution curves of (2), even we have not found yet any solution of (2).

The vector field of (2) will be depicted on a finite grid of points in D. This grid is made of lines,
paralell to the axes Ox and Oy. The intersectional points of those lines are called grid points and
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Figure 4: An approximation to the integration of f(x) = x sin x on [1, 9].

often indexed by (xi, yj), i = 1, . . . ,m, j = 1, . . . , n. For convenience, we will use polar coordinate
to locate the terminal point (x, y) of a field vector, with the initial point at the grid point (xi, yj).
Then, we can write

x = xi + r cosϕ,
y = yj + r sinϕ.

Because k = f(xi, yj) = tanϕ is finite, we may take −π/2 < ϕ < π/2. From sin2 ϕ+ cos2 ϕ = 1 and
sinϕ = k cosϕ, we derive

cosϕ = 1√
1 + k2 , sinϕ = k√

1 + k2 .

The field vectors should all have the same magnitude and we choose here that length to be 1/2, that
means r = 1/2. Thus, vectors on the grid have their initial points and terminal ones as

(xi, yj),
(
xi + 1

2 cosϕ, yj + 1
2 sinϕ

)
.

Of macros in PSTricks to draw lines, we select \parametricplot1 for its fitness. We immetiately
have the simple parameterization of the vector at the grid point (xi, yj) as

x = xi + t

2 cosϕ = xi + t

2
√

1 + k2 ,

y = yj + t

2 sinϕ = yj + tk

2
√

1 + k2 ,

where t goes from t = 0 to t = 1, along the direction of the vector. The macro \parametricplot
has the syntax as

\parametricplot[settings]{tmin}{tmax}{x(t)|y(t)},

where we should use the option algebraic to make the declaration of x(t) and y(t) simpler with
ASCII code.

1This macro is of ones, often added and updated in the package pstricks-add, the authors: Dominique Rodriguez
(dominique.rodriguez@waika9.com), Herbert Voß (voss@pstricks.de).
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Figure 5: Field vectors on a grid.

From the above description of one field vector, we go to the one of the whole vector field on the
grid in the domain R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. To determine the grid belonging to the
interior of R, we confine grid points to the range

a+ 0.25 ≤ xi ≤ b− 0.25, c+ 0.25 ≤ yj ≤ d− 0.25. (3)

With respect to the indices i and j, we choose initial values as x1 = a+ 0.25 and y1 = c+ 0.25, with
increments ∆x = ∆y = 0.5, as corresponding to the length of vectors and the distance between grid
points as indicated in Figure 5. Thus, to draw vectors at grid points (xi, yj), we need two loops for
i and j, with 0 ≤ i ≤ [2m], 0 ≤ j ≤ [2n], where m = b− a, n = d− c. Apparently, these two loops
are nested \multido’s, with variable declaration for each loop as follows

\nx = initial value + increment = x1 + ∆x,
\ny = initial value + increment = y1 + ∆y.

Finally, we will replace \nx, \ny by xi, yj in the below calling sequence for simplicity.
Thus, the main procedure to draw the vector field of the equation (2) on the grid (3) is

\multido
{
yj = y1 + ∆y

}{
[2n]

}{
\multido

{
xi = x1 + ∆x

}{
[2m]

}
{

\parametricplot[settings]{0}{1}
{
xi + t

2
√

1 +
[
f(xi, yj)

]2 ∣∣∣ yj + tf(xi, yj)

2
√

1 +
[
f(xi, yj)

]2}
}

where we at least use arrows=-> and algebraic for settings.
We can combine the steps mentioned above to define a drawing procedure, say \vecfld, that

consists of main parameters in the order as \nx=x1 +∆x, \ny=y1 +∆y, [2m], [2n], r and f(\nx, \ny).
We may change these values to modify the vector field or to avoid the vector intersection. However,
we often take ∆x = ∆y = r. Such a definition is suggested to be

\def\vecfld#1#2#3#4#5#6{%
\multido{#2}{#4}{\multido{#1}{#3}
{\parametricplot[algebraic,arrows=->,linecolor=red]{0}{1}
{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}}}}
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2.2. Examples

Firstly, we consider the equation that describes an object falling in a resistive medium:

dv

dt
= 9.8− v

5 , (4)

where v = v(t) is the speed of the object in time t. In Figure 6, the vector field of (4) is given on
the grid R = {(t, y) : 0 ≤ t ≤ 9, 46 ≤ v ≤ 52}, together with the graph of the equilibrium solution
v = 49.
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Figure 6: The vector field of (4).

Figure 6 is made of the following LATEX code:

\begin{pspicture}(0,46)(9.5,52.5)
\vecfld{\nx=0.25+0.50}{\ny=46.25+0.50}{18}{12}{0.5}{9.8-0.2*\ny}
\psplot[algebraic,linewidth=1.2pt]{0}{9}{49}
\psaxes[Dy=1,Dx=1,Oy=46]{->}(0,46)(0,46)(9.5,52.5)
\rput(9.5,45.8){$t$}\rput(-0.2,52.5){$y$}
\end{pspicture}

Let us next consider the problem

dy

dx
= x+ y, y(0) = 0. (5)

It is easy to check that y = ex − x− 1 is the unique solution to the problem (5). We now draw the
vector field of (5) and the solution curve2 on the grid R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 5} in Figure
7.

We then go to the logistic equation, which is chosen to be a model for the dependence of the
population size P on time t in Biology:

dP

dt
= kP

(
1− P

M

)
, (6)

2We have used ch(1) + sh(1) for the declaration of e, natural base of logarithmic function.
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Figure 7: The vector field of (5).

where k and M are constants, respectively various to selected species and environment. For
specification, we take, for instant, k = 0.5 and M = 100. The right hand side of (6) then
becomes f(t, P ) = 0.5P (1 − 0.01P ). In Figure 8, we draw the vector field of (6) on the grid
R = {(t, P ) : 0 ≤ t ≤ 10, 95 ≤ P ≤ 100} and the equilibrium solution curve P = 100. Furthermore,
with the initial condition P (0) = 95, the equation (6) has the unique solution P = 1900(e−0.5t+19)−1.
This solution curve is also given in Figure 8.
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Figure 8: The vector field of (6) with k = 0.5 and M = 100.

The previous differential equations are all of seperated variable or linear cases that can be solved
for closed-form solutions by some simple integration formulas. We will consider one more equation
of the non-linear case whose solution can only be approximated by numerical methods. The vector
field of such an equation is so useful and we will use the Runge-Kutta curves (of order 4) to add more
information about the behaviour of solution curve. Here, those Runge-Kutta curves are depicted by
the procedure \psplotDiffEqn, also updated from the package pstricks-add.

The vector field of the non-linear differential equation

dy

dx
= y2 − xy + 1 (7)

will be depicted on the grid R = {(x, y) : − 3 ≤ x ≤ 3, −3 ≤ y ≤ 3} and the solutions of Cauchy
problems for (7), corresponding to initial conditions

(i) y(−3) = −1,
(ii) y(−2) = −3,
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(iii) y(−3) = −0.4,
will be approximated by the method of Runge-Kutta, with the grid size h = 0.2. It is very easy to
recognize approximation curves, respective to (i), (ii) and (iii) in Figure 9 below.
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Figure 9: The vector field of (7) and the Runge-Kutta curves.
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