Appendix E�TCP-based Interim Merchant//Acquirer Payment Gateway Communications

TCP-based Communication

Overview�
To encourage interoperability among vendors, it is desirable to have a standard approach for data transport between merchants and acquirer payment gateways when they communicate over the Internet.

SET has been designed to place minimal requirements on the transport channel. SET requires only that the communications environment be able to carry arbitrary-length messages, and provide reasonable reliability. TCP is recommended as a simple-to-implement, generally acceptable, low-level communications channel. �
�

Requirements�
SET has been designed to place minimal requirements on the transport channel. SET requires only that the communications environment be able to carry arbitrary-length messages, and provide reasonable reliability. TCP is recommended as a simple-to-implement, generally acceptable, low-level communications channel.To ensure interoperability, merchants and payment gateways using TCP for communications, must use the method presented in this section. Although this method presumes communication between a merchant and a payment gateway, nothing in this method, other than the security and performance considerations, precludes communications between any two SET parties. This method does not preclude multiple, parallel connection between the parties.�
�

Benefits�
TCP has a number of advantages over other low-level Internet protocols such as UDP. First, it is error-correcting. Most SET messages are signed, so errors are detected by SET implementations. However, error-correction at the communications transport level will improve the overall performance and robustness of SET implementations in the face of error-prone communications environments.

Second, TCP permits arbitrary-length messages. Some SET messages may be longer than the 512-byte capacity guaranteed for UDP packets.

Using TCP for data communications according to the method described in this section offers several advantages compared to HTTP. First, the overhead of establishing and maintaining each TCP session may be amortized over multiple SET request/response pairs. The merchant server and payment gateway may choose to hold a TCP session open across multiple requests, and multiple request(s) may be interleaved on one session. Second, session management functions are provided in a manner tailored to the needs of SET. These functions include echo, transport-level error indication, retry, and graceful close of sessions. Third, a connection authentication mechanism is provided to deter one form of denial-of-service attack.

Note: TCP does not offer any security for the data transmitted within it. This is not an issue for SET messages, as the SET protocol provides all required security for message contents. However, any additional information exchanged via this TCP connection will not be protected.�
�

Alternative methods�
Alternative methods for exchanging SET messages, such as HTTP, are presented in other sections of this document. �
�

Alternative Interleavingmethods�
The TCP method specified in this section allows asynchronous communications. This allows the merchant to interleave its requests. In other words, a merchant may send another request right after the first without waiting for paired responses. The responses may come back in any orderThe method presented here is intended only as a guide to aid developers. It is not a requirement of SET operation. Alternative methods for exchanging SET messages are welcome. In fact, it is expected that as electronic commerce develops, other protocols will become available that more cleanly support the exchange of electronic commerce transaction messages, allowing several protocols to share the same network channel. The method presented here is an interim solution intended to allow Internet based payment card payment authorization to begin immediately.. If there is a communications failure, it is up to the merchant to re-send requests that did not receive responses.

The maximum number of outstanding requests shall be limited by a configuration parameter.

The merchant can have synchronous communications by always waiting for a response before sending the next request.�
�

Merchant authentication (optional)�
There is a certain amount of computational cost to processing even bogus or forged SET messages. Given the TCP method described here, one possible attack on the SET system is a denial of service attack in which a malicious entity floods the payment gateway with bogus messages with the intent of tying up its resources. This risk of this attack can be mitigated by authenticating the merchant. The following two simple authentication mechanisms are provided:

TCP address authentication -- authentication is accomplished by the payment gateway only accepting connections from certain TCP addresses, and rejecting all other connection attempts.

Challenge authentication -- authentication is accomplished via a challenge and response mechanism using shared secrets.

These two mechanisms may be optionally used in any combination and make it difficult or impossible for unauthorized parties to deliver messages to the payment gateway. �
�
Continued on next page

�
�styleref "Map Title"�TCP-based Communication�, continued

Connection states�
This method defines the following connection states for a TCP connection between the merchant and the gateway:

Closed -- no connection exists between the merchant and the gateway.

Greeting -- the gateway greets the merchant, with an optional authentication challenge.

Authenticating -- the gateway authenticates the merchant

Open -- the merchant and the gateway can exchange SET messages.

Closing -- either party has requested that the connection be closed.

These connection states are illustrated in the following diagram:

� EMBED Visio.Drawing.3 ���

These states are for the expected operation of a connection. Network errors such as equipment failures will cause the state to transition to the Closed state.�
�

Connection Events�
The following events cause transition from one state to another:

Open TCP Connection -- this event signals that the merchant opened a TCP connection to the gateway.

Merchant Address Invalid -- This event signals that the merchant’s TCP address is invalid to the payment gateway.

Challenge Issued -- this event signals that the gateway wants to authenticate the merchant and issued a challenge to the merchant.

No Challenge Issued -- this event signals that the gateway is not challenging the merchant and has accepted the connection.

Close -- this event signals that either party sent a Close request, requesting that the connection be closed.

Close TCP Connection -- this event signals that both parties have terminated the connection between them.�
�

Closed state�
This is the state when a connection does not exist between the merchant and the payment gateway. For a connection to exist, the merchant has to open a TCP connection, causing a transition to the Greeting state. The merchant opens a TCP connection with the gateway anytime the merchant has a request to transmit (and no available connection exists).�
�

Connection Greetinginitiation state�
This state is entered when the merchant opens a TCP connection with the gateway (this implies that the gateway is “listening” for a connection). The merchant may open a TCP with the gateway anytime the merchant has a request to transmit. If merchant address authentication is required, the gateway shall verify and only accept connections from specified TCP addresses. The payment gateway’s TCP address, port, and the merchant’s TCP address (if required) are communicated out-of-band.

When the merchant opens a TCP connectionconnection, the gateway shall respondwill initiate communication by sending a gGreeting message through the connection. The gGreeting will signal that the gateway is prepared to receive data. No data shall be sent by the merchant until the greeting is received.If the Greeting is not received by the merchant in t30 seconds, the connection shall be closed. The default time-out value for t30 shall be 30 seconds; this time-out value shall be configurable and communicated out-of-band.

 The gGreeting shawill consist of one of two messages. If the gateway performs TCP address authentication, and the merchant’s address is invalid, the message shall be “-ERR|text(” (where “(” is ASCII CR-LF). The fields of the message are separated by the “|” character, and must always be present. The text field is optional text that the gateway may used to provide more information. If the merchant’s address is valid, or if no TCP address authentication is required, the message shall be “+OK|text|challenge(”. The text field is any text the acquirer wants to send to the merchant. It is recommended that, at a minimum, it include status, the gateway’s host name or IP number and a connection ID. The status may be either “+OK” or “-ERR”. The connection ID shall be unique across hosts and connections and may include the time, the hostname, the process ID, and a nonce value. The challenge field contains the challenge the gateway sends to the merchant for challenge authentication. If no challenge authentication is required, this field must be null. All fields must consist of printable ASCII characters.

If no challenge is issued (that is, no authentication is required), the connection is established, and the state transitions to the Open state. If a challenge is issued (that is, authentication is required), the state transitions to the Authenticating state.

The following are

Here is an example greetings.:

OK message with a challenge:

“+OK |payment.gateway.com is ready.| < 3141 12:34:56 01/23/45 ppayment.gateway.com>(”

OK message without a challenge:

“+OK|payment.gateway.com is ready|(”

Error message with text:

“-ERR|Invalid merchant address(”

Error message with no text:

“-ERR|(”

The connection may be terminated at any time by either party.

NOTE: The Greeting message is not MIME-wrapped.�
�
�
The following diagram shows a flowchart for the Merchant in the Greeting state:

� EMBED Visio.Drawing.3 ����
�
�
The following diagram shows a flowchart for the Payment Gateway in the Greeting state:

� EMBED Visio.Drawing.3 ����
�
Continued on next page

�
�styleref "Map Title"�TCP-based Communication�, continued

Authenticating state�
This is the state where the merchant challenge authentication is performed. Authentication shall be accomplished via a challenge and response mechanism using a shared secret. This state is entered when the gateway issues a challenge to the merchant in the Greeting message.

After issuing the challenge, the gateway shall wait for the Authentication message from the merchant (with a time-out value t30 as above). The Authentication message shall consist of the following: “Authentication|transportId|authenticationResp(”. The transportId field is a configurable transport layer ID for the merchant and shall uniquely identify the merchant to the gateway. It may be anything from a pre-assigned value (for example, the merchant’s DNS name) to a certificate thumbprint. The authenticationResp field is defined as follows:

authenticationResp = base64(HMAC(Greeting||transportID, shared-secret))

where:

Greeting is the complete Greeting message without the trailing CR-LF,

|| is the concatenation operator,

transportID is the transportID in the Authentication message, (without any surrounding whitespace),

shared-secret is the shared secret used as the key to the HMAC function (described in Book 2 of this specification). The shared secret may be anything but shall be communicated out-of-band.

After receiving the Authentication message, the gateway will verify the authenticationResp field and return the Authentication-Reply message to the merchant. The Authentication-Reply consists of one of two messages. If the authentication succeeded, the message shall be “+OK|text(”. The state then transitions to the Open state. If the authentication failed, the message shall be “-ERR|text(”. Both the merchant and the gateway shall close the TCP connection, and transition to the Closed state.

After sending the Authentication message, the merchant shall wait for the Authentication-Reply message from the gateway (with a time-out value t30 as above).

NOTE: The Authentication and Authentication-Reply messages are not MIME-wrapped.�
�
�
The following diagram shows a flowchart for the Merchant in the Authenticating state:

� EMBED Visio.Drawing.3 ����
�
�
The following diagram shows a flowchart for the Payment Gateway in the Authenticating state:

� EMBED Visio.Drawing.3 ����
�

Continued on next page

�
�styleref "Map Title"�TCP-based Communication�, continued

Session Opennegotiation state�
It is expected that the gateway will send the matching response on the same session. If the session is dropped before the merchant receives the response, the merchant may open a new session and re-send the request; the idempotent design of SET ensures that the merchant will receive the same response no matter how many times the gateway receives any particular request.

Once the merchant has established a session with the gateway, the merchant may optionally hold the session open, and reuse it for subsequent requests. Alternatively, either party may close the session between request/response pairs.

Request/response pairs on a single session are serialized. As an implementation option (and upon agreement with the gateway provider), the merchant may initiate multiple requests operating in parallel over separate sessions.

The Internet addresses used for the sessions shall be communicated out-of-band. As the larger electronic commerce picture comes into focus, a port number may be requested from IANA specifically for handling electronic commerce traffic. Until such time, the port number also shall be negotiated out-of-band.It is only in this state that the merchant can send SET requests to the payment gateway. As stated above, the merchant can interleave the requests to the gateway.

Whenever either party desires to close the communications, it issues the Close request that causes the state to transition to the Close state.

All messages sent in this state are MIME-wrapped as described later in this section.�
�

Closing state�
This state allows the graceful closing of a connection between the merchant and the payment gateway. This state is entered when either the merchant or the gateway sends a Close request. After a Close request is sent (by either party), the gateway shall ignore any SET requests from the merchant.

If the merchant sends the Close request, it shall wait for the Close-Reply response (with a time-out value t30 as above) from the gateway. When the Close-Reply response is received (or a time-out occurs), the merchant shall close the TCP connection and transition to the Closed state. When the payment gateway receives the Close request, it shall respond with a Close-Reply. After sending the Close-Reply, both parties shall close the TCP connection. Any outstanding SET responses shall be lost. The following diagram illustrates the message flow when the merchant sends the Close request:

� EMBED ShapewareVISIO20 ���

If the payment gateway sends the Close request, the merchant can wait until it receives any outstanding SET responses before sending the Close-Reply response to the gateway. If the gateway does not receive the Close-Reply response within t120 seconds (as above), the payment gateway shall close the TCP connection and transition to the Closed state. The following diagram illustrates the message flow when the gateway sends the Close request:

� EMBED ShapewareVISIO20 ���

If a Close request is received while in this state, it shall be treated like a Close-Reply response.�
�

SET message Message encodMIME-wrapping�
All SET messages between merchant and payment gateway are defined in ASN.1 and encoded according to the Distinguished Encoding Rules (DER) as described in this specification.All SET messages between merchant and payment gateway are defined in ASN.1 and encoded according to the Distinguished Encoding Rules as described in this specification. When exchanged via this TCP method, tThese messages shall be wrappedproceeded by a standard MIME headers as followsdescribed in Part I. The headers identify the SET messages and simplify encapsulation of the messages in other transport channels.

The following is an example set of MIME headers:

MIME-Version: 1.0(

Content-type: application/set-payment;msg-tag=“xxx”application/set-payment(

Content-transfer-encoding: binary(

Content-length: xxx(

(

{SET ASN.1 DER message}

All MIME header labels and values are case insensitive. Any additional headers, for example, a Date: header, are ignored. Content-type and content-length are required. MIME-Version is optional. Content-transfer-encoding is optional, and defaults to binary. If present, it shall always be binary.

The msg-tag parameter is optional, and if present in a SET request, it must be return in the SET response. The following are reasons for using the msg-tag:

There will be cases where multiple merchants wish to communicate over the same link, as in an Internet Mall, and the responses need to be sent to the correct merchant.

There will be times when it is desirable to observe messages passing over a physical link with a line monitor and easily see some plain text identification of the message.

There will be cases where the merchant wants to interleave messages, the responses need to be matched to the request.

There will be cases where messages received at an acquirer’s payment gateway communication front end need to be efficiently dispatched to different gateway back-ends, as indicated by the merchant under prior agreement with the acquirer. This usage is outside the scope of this method.

All of these and possibly additional functions are enabled by the msg-tag parameter. The merchant can add it to the Content-Type header in the MIME wrapper on SET requests. Its value is quoted string or token, up to 32 characters, as specified in RFC-1521. The value is specified by the merchant and is opaque to and echoed back by the payment gateway. The merchant is free to encode multiple "subfields" into the msg-tag value. For example the tag may be: “merchantID.messageSequenceNo”, where “merchantID” identifies the merchant within a mall, and the “messageSequenceNo” is the number of message so that the merchant can correlate a response to a request.�
�

Transport layer control messages�
This TCP method provides for a number of transport layer conditions to be noted and transport layer actions to be available. These notifications and actions are indicated by a MIME formatted message described below. Messages are needed for graceful close of the TCP connection, transport level status reporting, and a transport level test of the connection.

The general structure of these transport layer messages is as follows:

MIME-version: 1.0(

Content-type: text/set-transport;control=uuu;

 class=xxx;delay=yyy;msg-tag=“zzz”(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is a human readable text.}(

The content-type and content-length headers are required. MIME-version and content-transfer-encoding are optional with the default content-transfer-encoding being 7bit. Unknown headers are ignored. The body of the message is intended to be human readable text.

For the control parameter, the only acceptable values are:

close – specifies a Close request message

close-reply – specifies a Close response message

status – specifies a Status message

echo – specifies an Echo request message

echo-reply – specifies an Echo response message

The msg-tag parameter is required for control=status messages, and optional for the other messages. If it is present, then it shall be included in any response. The class and delay parameters are only valid when control=status.�
�

Graceful close message�
With multiple outstanding requests permitted on a TCP/IP connection, a graceful way to close is required. This process was described in the Closing state description.

Graceful close is indicated by a control=close parameter and the response by a control=close-reply. The body of the close should indicate the reason for the close (idle-connection, equipment going out of service, etc.), and should be echoed in the response.

The following is a sample Close request:

MIME-version: 1.0(

Content-type: text/set-transport;control=close;

 msg-tag=“zzz”(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is a human readable text.}(

The following is a sample Close-Reply response:

MIME-version: 1.0(

Content-type: text/set-transport;control=close-reply;

 msg-tag=“zzz”(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is a human readable text.}(�
�

Status messages�
Status messages are indicated by a control=status parameter. There shall be no response to a status message. NOTE: These are transport layer only messages. Any SET level errors are indicated through the SET Error and Response messages.�
�
�
If class=failed, a permanent error has occurred in the sense that the message causing the error should not be retried. The body contains an explanation. For example: “Messages too big”, “Service unavailable”, “Bad content type”, “Bad content-transfer-encoding”, “Connection closing”, etc.

The following is a sample “failed” message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=failed;

 msg-tag=“xxx”(

Content-length: 19(

Content-transfer-encoding: 7bit(

(

Service unavailable(�
�
�
If class=retry, a transient error has occurred and the message causing the error may be retried in not less than n number of seconds as specified by delay=n. This number shall be greater than zero. For example: “Busy”, “Too many outstanding requests”, etc.

The following is a sample “retry” message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;

 class=retry;delay=5;msg-tag=“xxx”(

Content-length: 29(

Content-transfer-encoding: 7bit(

(

Too many outstanding requests(�
�
�
If class=info, the message has been accepted and some status concerning it is being reported. The only anticipated use of this is to inform the sender that a response may be unusually delayed. It is possible to receive multiple such status messages for one request and possible to receive one or more such status messages followed by a transport status message.

The following is a sample “info” message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=info;

 msg-tag=“xxx”(

Content-length: 22(

Content-transfer-encoding: 7bit(

(

Slow financial network(�
�
�
If class=closing, the message has not been accepted because the connection is closing. The merchant should resend this message in another connection.

The following is a sample “closing” message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=closing;

 msg-tag=“xxx”(

Content-length: 21(

Content-transfer-encoding: 7bit(

(

Connection is closing(�
�

Echo messages�
Echo messages may be used to test transport layer connectivity, and can be issued by either party. They are indicated by control=echo and the response by control=echo-reply. The body of the echo message must be echoed as the body of the echo-reply.

The following is a sample Echo request:

MIME-version: 1.0(

Content-type: text/set-transport;control=echo(

Content-length: 14(

Content-transfer-encoding: 7bit(

(

Are you there?(

The following is a sample Echo response:

MIME-version: 1.0(

Content-type: text/set-transport;control=echo-reply(

Content-length: 14(

Content-transfer-encoding: 7bit(

(

Are you there?(�
�

Non-SET message summary�
The following table summarizes the non-SET messages used in this TCP communications method:�
�

Message Name�
Allowed in

States�
Description�
MIME-

wrapped�
�
Greeting�
Greeting�
Sent by payment gateway to accept connection or challenge merchant.�
No�
�
Authentication�
Authenticating�
Sent by merchant to respond to the payment gateway’s challenge.�
No�
�
Authentication-Reply�
Authenticating�
Sent by the payment gateway to accept or deny the merchant’s challenge.�
No�
�
Close�
Open�
Sent by either party to request a graceful closing of the connection.�
Yes�
�
Close-Reply�
Closing�
Sent by the party receiving the Close request to acknowledge the Close.�
Yes�
�
Status�
Open,

Closing�
Sent by the payment gateway to inform the merchant of a status with the previous message.�
Yes�
�
Echo�
Open,

Closing�
Sent by either party to request confirmation that the connection is still active.�
Yes�
�
Echo-Reply�
Open,

Closing�
Sent by the party receiving the Echo request to acknowledge the Echo.�
Yes�
�

Diagnostic log�
When diagnostic log messages are sent from merchant to the payment gateways via TCP, the following method is specified:

� EMBED ShapewareVISIO20 ���

The merchant shall generate a diagnostic log message when they receive a SET response message that fails basic SET message decoding. Such failures include DER-decoding errors, and failure of signature verifications.

The merchant shall open a TCP connection to the payment gateway's diagnostic log port, send a diagnostic log message as a MIME-encapsulated DER-encoded SET message, and then close the TCP connection.

Merchants shall send only one diagnostic log message per TCP connection.

Payment gateways shall not respond to diagnostic log messages, but shall simply close the TCP connection once each message is received.

Processing of the diagnostic log message by the payment gateway shall be implementation dependent. It is strongly recommend that gateways journal such messages in log files.�
�

Example communication�
The following are several examples of merchant to payment gateway communications.�
�
�
Single SET request/response pair with Authentication and no errors:

� EMBED Visio.Drawing.3 ���

Notes:

If the Merchant does not want to interleave transactions, it may still send multiple requests on a single connection in serial mode waiting for each response before sending the next request.

Multiple simultaneous connections, up to the agreed maximum, may be in progress between the Merchant and the Payment Gateway.�
�
�
Multiple request/response pairs with Authentication and no errors:

� EMBED Visio.Drawing.3 ���

Notes:

Responses to SET requests may come back in any order.

An Echo request may be sent by either end of a connection while in the connection is in the Open state.

The Payment Gateway may send a Close request while responses are outstanding.

The Merchant shall only send the Close-Reply after all outstanding SET responses are received or timed-out.

Since TCP is full-duplex, responses to SET requests may be returned at any time.�
�
�
Merchant sends the Close request:

� EMBED Visio.Drawing.3 ���

Notes:

Merchant decides to close the connection.

Merchant waits for all outstanding responses.

Merchant sends Close request. The Merchant shall not send the Close request when SET responses are outstanding unless it is willing to lose the responses. Any outstanding responses will be discarded by the Payment Gateway after it receives the Close request.�
�
�
Payment Gateway sends Close request and Merchant sends a request after receiving the Close request:

� EMBED Visio.Drawing.3 ���

Notes:

Gateway sends a Close request.

Merchant sends another SET request. This may be unintentional due to IP stack or transmission delays at either end of the connection.

Gateway sends a Status with a class=closing indicating that the message should not be resent in this connection. Merchant may resend the request on another connection.�
�
�
Transport errors occur during processing:

� EMBED Visio.Drawing.3 ���

Notes:

The Payment Gateway received a request that could not be handled at this time. It sent the Merchant a Status, indicating that the request should be resent in n seconds. N is defined in the delay field of the MIME message header.

The Merchant waits n seconds before resending this request. It should not be assumed that no request may be sent until the delay expires as the Gateway may be having a problem with specific requests.

A Status message with “class=failed” indicates that the previous message should not be resent on this or any other connection.

A Status message shall never be sent as a response to a received Status message.�
�

Out-of-band Merchant/

Acquirer Agreement�
The merchant and acquirer must agree on a list of networking attributes prior to TCP communications. This list must be exchanged out-of-band. A partial list of these attributes, with an explanation is provided below:

DNS name(or IP address) and port number

Each participant requires a resolvable DNS name, or IP address, and port number to open a connection for communications.

Transport ID name

The Transport ID name is the identity of the message originator (for example, the name of the originating host). This field is used in the Authentication message.

Maximum number of outstanding requests per TCP connection

This is the maximum number of pending request(s) in the participant’s network queue to be processed.

Minimum time-out on outstanding requests

The minimum time one should wait before resubmitting requests.

Maximum time-out for value t30

The maximum time one should wait while in the Greeting and Authenticating states.

Maximum time-out for value t120

The maximum time one should wait while in the Closing state.

Maximum number of concurrent TCP connections

This is the maximum number of concurrent TCP connections that are available to each participant.

Maximum number of automatic retries per request

This is the maximum number of retries a participant can send per request.

Authentication requirement

This attribute determines whether authentication is necessary between the communicating parties.

Shared secret value

This attribute is the key that the HMAC function will use for generating the challenge/response.

�
�

