Eudora Extended Message Services API Version 3

April 4, 1997
80-8359-1 Revision XV
QUALCOMM Inc.
Laurence Lundblade
Julia Blumin

For more information write to <eudora-emsapi @qual comm.com>

QUALCOMM Incorporated
6455 Lusk Blvd.
San Diego, CA 92121-2779

USA

Copyright © 1996, 1997 QUALCOMM Incorporated.

All rights reserved. Printed in the United States of America.

Eudora EMS API Page 1

Table of Contents

1. INTRODUCTION

2. PLUG-INS, TRANSLATORS, ATTACHERS, SPECIAL TOOLS
1.1. Plug-in entry points

1.2. Translator entry points

1.3. Attacher entry points

1.4. Special Tools entry points

1.5. Linking, loading and IDs

1.6. Stored State and access to other files

1.7. Version numbering

2. TRANSLATED OBJECT TYPES AND FORMATS

2.1. Translated object types
2.2. Translated object data formats
2.3. Translated object data formats - the local non-MIME format

2.4. Translated object formats - the MIME Canonical Format

3. DISPLAY IN THE USER INTERFACE

4. THE TRANSLATION PROCESS

4.1. On-arrival

4.2. On-display

4.3. On-request

4.4. Queue and call on transmission (Q4-transmission)

4.5. Planned for API version 4 - Queue and call on completion

5. ATTACHMENT PLUG-INS

6. SPECIAL TOOLS PLUG-INS

Eudora EMS API

10

10

12

13
13
14
14
15

15

17

18

Page 2

7. APl REFERENCE

7.1. Constants

7.2. Macintosh data structures

7.3. Windows data structures

7.4. Building Macintosh components

7.5. Building Windows DLLs

7.6. Efficiency considerations

7.7. Get the API version number that this plug-in implements
7.8. Initialize plug-in and get its basic info

7.9. Get basic translator info

7.10. Check to see whether a translation can be performed
7.11. Performing translations (file version)

7.12. Finish use of a plug-in

7.13. Free API data structures (Windows only)

7.14. Plug-in Settings Dialog

7.15. Queued translation properties

7.16. Attachment Menu Items

7.17. Attachment Menu Hook

7.18. Special Menu Items

7.19. Special Menu Hook

8. CHANGES IN LATEST API DESCRIPTIONS

9. REFERENCES

APPENDIX A - A BRIEF INTRODUCTION TO MIME

Eudora EMS API

20
20
21
24
25
26
26
28
29
31
32
34
36
37
38
39
40
41
42

43

44

46

47

Page 3

1. Introduction

Note: sections one through seven of this document provide overview, background and
implementation guidelines for the EMS API. Detailed reference information for
implementation begins in section six.

The Eudora Extended Message Services APl (EMS API) is designed so that third party plug-ins can be added
to Eudora by the end user. Plug-ins may be supplied by QUALCOMM Incorporated, an independent
vendor, be available as shareware, or be authored by the end user. Plug-ins may perform transformations on
e-mail messages as they are received, as they are sent or on the command of the user. Additionally, they
can add attachments to messages as well as be simply a hook to another application. The APl is general
enough to accommodate transformations ranging from compression/decompression, to file format
conversions, graphic format conversions, human language translation, digital signing and others. U . S.
developers of plug-ins which perform encryption/decryption should contact the U.S.
Department of State's Office of Defense Trade Controlsin order to determine the
licensing requirements applicable to exports of such translator plug-ins from the
United States.

When Eudora starts up it will search for plug-ins on the user's system. It will look for Windows DLL’s or
Macintosh Componentsin a set of specific places on the user's system. Once located, the plug-ins will
show up as menu items and check boxes in the Eudora user interface and/or be invoked automatically as
messages are sent and received. When invoked, plug-ins may interact directly with the user by putting up
their own dial ogue boxes and menu items for attachments and tools.

Each plug-in may contain trandators, attachers and special toolsiin it.

A trandator performs some transformation on a message. It is often convenient to put several trandatorsin
one plug-in because they may share alot of code or other resources. It is also possible for atranslator to be
used simply as a hook for access to messages as they are received, viewed or sent. That is, atransator may
perform no translation at all.

Thetrandatorsin aplug-in are executed in the following contexts:

On-arrival — When the message arrives from the mail server non-interactive translations can occur.
It isalso possible for atrandator to indicate processing (MIME parsing and further trand ation) of the
message structure should be suspended until it can be done in an interactive context.

On-display — When the message is selected for display an interactive translator may be
automatically run. The result will be displayed to the user.

On-request — Trangdlations for both received messages and messages under composition can be
selected from a menu item. The translation will be performed right away and the result shown to the
user.

Q4-transmission — More properly described as “queue and call on transmission,” thistrandation is
selected by icon from the top bar of the message composition window. Then when the message is
actually being transmitted to the SMTP server the trandlation is performed.

Eudora EMS API Page 4

When aplug-in isloaded, it registers in which of the above contexts each of its trandlators, attachers, and
special tools wishesto be called in. For example a plug-in which does digital signing may have two
translatorsin it, one to add a signature to an outgoing message, and one to verify a signature on an
incoming message. The translator which adds the signature may register to be queued and called on
transmission, and the signature verification translator may register to be called on-display.

The EMS APl makes heavy use of the MIME standard for describing and representing the data type of an e-
mail message and its sub-parts. The design of the API and the SDK isintended to make it possible to
implement plug-ins without an in-depth understanding of MIME and without having to implement large
parts of the MIME standard in the plug-ins.

Trandators may operate on the whole message or only on any sub-part of the message. Eudora performs a
full traversal of the MIME structure of the message and calls translators on parts and sub-parts as they wish
to be called. Thiswill alow plug-ins to work on individual parts of a multipart message without having to
implement any MIME parsing.

The data type of atrandator’sinput and output datais |abeled using MIME. For example, the MIME
typing might include the text format and character set, the type of compression, or the type of graphic
image (e.g., GIF or JPEG).

Tranglators can create and access their own data files or make use of such files created by other applications.
They may also access and modify datathat is shared with a companion application.

The Attacher in a plug-in is used in the following contexts:

Attachment — When amessage is being composed in Eudora, Attachment plug-ins can be selected
from amenu item. The plug-in will return file(s) that will be attached to the message.

The Specials Tool in aplug-inis used in the following contexts:
Special — Specia Plug-ins will be available for selection on the menu at any time. This simply

provides a hook for other utilities to be hooked into Eudora. Anything can be done here, launching
another application, calling a script.

Eudora EMS API Page 5

2. Plug-ins, Translators, Attachers, Special Tools

Most individual trandations that are a candidate for implementation viathe EMS APl come in pairs or
groups. Examples are compression and decompression, Spanish to English and English to Spanish, digital
signing and authenticating, and certificate management. An implementation of a group usually will have a
lot of code in common and is most easily installed and configured by the user as a single entity. Thus,
plug-ins are implemented as a collection of trandators, attachers and special toals.

Plug-in/DLL/Component
3 N

Antic.Inc \Who's on FirstGmbh

EMS API

EUDORA

Figure: Eudora and two plug-ins

An individual trangator in aplug-in performs one specific transformation on a translatable object. For
example it authenticates the object, or converts a graphic from JPEG to GIF format. A plug-inisa
collection of related trandators. Plug-ins are implemented asa DLL for Windows and as a Component on
the Macintosh.

1.1. Plug-in entry points
Each plug-in has a set of entry points or functions that are called by Eudora:

ens_pl ugi n_versi on Iscalled first to get the API version number the plug-in uses and
thereby the calling conventions for the other functions. (Requi r ed)

ens_pl ugi n_init Isalways called second and only once as the plug-in is loaded during
Eudora startup. (Requi r ed)

ens_pl ugi n_fini sh Called when Eudoraexits. (Requi r ed)

ens_free (Windows only) Called by Eudorato free data structures passed from
the plug-in to Eudora. (Qpti onal)

Eudora EMS API Page 6

ens_pl ugi n_config Used to configure user-defined settings, called when the “ Settings...”
button is clicked while the plug-in is highlighted. (ot i onal)

1.2. Translator entry points

ens_transl ator_info Supplies basic info about individua trandlators. Is called once for
each trandlator on start up and at other times when specific items
(like the icon) are needed for an individua trandator. (opt i onal *)

ens_can_transl ate Called to check whether atrandation can be performed on a particular
item, before the actual tranglation is attempted.

ens_translate file Called to actually perform the trandation.

ens_queued_properties For Q4-transmission trandators, this allows user-defined properties to
be set on a per-message basis. This function is called when the user
clicks the tranglator icon while composing a message. (Opt i onal)

1.3. Attacher entry points

ens_attacher_info Called once on startup. Thiswill add items to the M essage->
Attachments sub-menu (opt i onal *)

ens_at t acher _hook When the M essage->Attachments sub-menu item is called, this hook
will be called to allow afile to be attached to a message.

1.4. Special Tools entry points

ens_speci al _info Called once on startup. Thiswill add items to the Special -> sub
menu. (optional *)

ens_speci al _hook When the Special-> sub menu item is called.

Some of these functions are optional, but every translator must supply a minimal set of these functions.
The minimal set includes ens_pl ugi n_ver si on, ens_pl ugi n_i ni t, ens_pl ugi n_fi ni sh. Except

ens_pl ugin_init, ens_pl ugi n_finish,andens_pl ugi n_confi g all of these functions take an argument
which specifies which of the trandlators, attachers or special toolsin the plug-in is being called. For
example, if aplug-in was loaded that performs compression/decompression and Eudora wanted to call the
data compression trandlator, it would call ens_t ransl at e_fi | e with the ID of the compression translator.
If it wanted to perform decompression it would also call ens_transl ate fil e, but it would pass the ID of
the decompression trandator instead.

* Atleastoneof ens_translator_info, ens_attacher_info or ens_special _i nfo must be defined.
In other words, this plug-in must have some actions associated with it.

1.5. Linking, loading and IDs

For Windows, aplug-inisimplemented asa DLL. The above entry points are implemented as a set of
functionsinthe DLL. A standard C calling convention is used, and the DLL islocated by searching a
specific set of directories (see section 6). The actual implementation may bein C, C++ or other, aslong as
the standard C calling convention is followed.

Eudora EMS API Page 7

On the Macintosh, the EMS APl makes use of the Component Manager to load and link the plug-in into
Eudora. The calling convention thus conforms with what the Component Manager specifies. It isbasically
the stack-based Pascal calling convention. The details involved in implementing this can be skimmed over
by using glue code supplied in the SDK. Plug-ins can be written in any language as long as the calling
convention is adhered to. Plug-ins may also be implemented from code fragments or shared libraries with
some small amount of glue code. Exact details of what is needed to build a component are given in section
SsiX.

On the Macintosh it is also possible to statically link a plug-in with atest driver, the source for which is
included in the SDK. It may be easier to debug plug-ins with the test driver since some of the Macintosh
tools don’t work as well on components.

Each plug-in must have adistinct ID number. To ensure these ID numbers are unique they are allocated by
QUALCOMM. To obtain aunique ID, send a blank message to <emsapi-ids@qualcomm.com>. A list of
several IDswill be returned by an auto-responder. The auto-responder doesn’t actually track 1Ds by
individuals or organization, it just returns monotonically increasing integers, so it's OK to request a second
or third set if needed.

1.6. Stored State and access to other files

Plug-ins may permanently store configuration and other information as needed. Eudora provides no
mechanism for this, but does suggest the name of a directory so plug-in configuration can track Eudora
settings for users with multiple settings files. Basically, plug-ins should store state like any other
application using a Preferencesfile or a.Il N file. Shared configurations can be dealt with on a case-by-case
basis depending on what is appropriate for the plug-in.

Plug-ins may also freely access other data and files and may share data with other applications. An example
of thismight be a set of dictionaries for language tranglation. Translators may also make accesses across the
network. An example of this might be to accessto directory service to get certificates.

1.7. Version numbering

There are version numbers for three things related to the EMS API. As Eudora changesit will have different
version numbers. However every version of Eudorawill not result in achange in the API definition so the
API hasits own version number. It isasingle integer. It is also possible that Eudorawill support multiple
API versions for backward compatibility. The third version number is associated with the SDK. It may
change independent of the Eudora version number. Both the Eudora version and the SDK version will
change when the API version number changes. The current statusis:

API: Current versionis 3

Eudora: Macintosh versions 3.1 and higher support APl version 1 ad version 3
Windows versions 3.0.1 and higher support APl version 2andversion 3

SDK: We provide SDKs for both the Macintosh and Windows on our web site at

<http://www.eudora.com/devel oper/emsapi/>

Eudora EMS API Page 8

2. Translated Object Types and Formats

This section discusses the scheme used to describe the types and data formats of the input and output data
that is actually translated. Most of the discussion centers on MIME, the Internet standard for encoding,
structuring and typing datain Internet email.

Therest of the section isrelated to MIME. The EMS API uses MIME in two ways. The first use of MIME
is used to describe the type of the input and output data for atrandator. All objects that are operated on via
the EMS APl have aMIME type. A translator usually determines what messages and message entitiesto
operate on by the MIME. A translator must always specify the MIME type of its output when it returns the
result to Eudora. These MIME types are passed to and from Eudora as parameters in the API entry point
functions. Examples of typesare t ext / pl ai n for plain text, i nage/ gi f for a GIF image, and

mul ti part/si gned for an RFC-1847-style signed message. This pairing is referred to as the MIME type
(eg. “text ") and the MIME subtype (eg. “pl ai n”) when passed across the API.

The second use of MIME isfor the format of the actual data. Thisisthe datathat is passed across the API
by referencing afile name. The trandated data can be in one of two basic formats, the native local format
(e.g., plain text in the Macintosh character set or an unencoded GIF image), or in full MIME format (e.g.,
with MIME headers, canonicalization, and transfer encoding). It is expected that most translators need only
operate on datain the local format, and thus do not need to do any MIME processing assigning and
checking the MIME types as described above.

Plug-ins that operate on multipart MIME entities are the ones that will need to have their input and output
datain MIME format. That is, the API uses standard MIME format to represent multipart MIME entities.
One example of a plug-in that will require MIME format data is one that implements RFC-1847-style
signed messages, since that format uses a two-part entity. One part is the signed data, and a second part is
the signature. Another example is a plug-in that wishes to compress (or otherwise process) the fulll
outgoing message including attachments.

2.1. Translated object types

As mentioned above, each entity operated on by plug-insis described by a MIME type, and thistypeis
passed across the API in parameters to the entry point functions. (The term entity is used to refer to a
message or a sub-part of aMIME message) The types are used by the trandlators to determine whether they
should run on some data or not.

The EMS API defines a C data structure for passing MIME type information across the APl to describe the
data object being operated on. Source code for managing the data structure is available in the SDK.

When performing a translation, the plug-in will check the MIME type of the input data. Thisisusually the
main criteria for the trand ator to decide whether or not it will perform the translation. The typeispassed in
by Eudora, so the trandlator doesn’t actually have to examine the data to be translated. When the trandlation
is complete, the translator must return the MIME type of the result to Eudora. Except for translators
invoked in the on-request context, the MIME types for the input and output must be different (even if just
by aMIME parameter) to avoid circular transations.

2.2. Translated object data formats

This document has referred to the term MIME entity. This term comes from the MIME standard. In the
simplest case aMIME entity isjust an email message. The MIME standard assumes that a message with
no MIME headers at al isasimple MIME entity of typet ext/ pl ai n with no transfer encoding or other
MIME features. A multipart MIME message is also considered a MIME entity, as are each of its sub-parts.
If amessage has nested multiparts, then each multipart is also aMIME entity. Basically a nested multipart

Eudora EMS API Page 9

MIME message can be viewed as having atree structure, and every node in the tree (leaf or branch) is
considered aMIME entity.

Plug-ins have the ability in certain contexts to transate any MIME entity in the structure of the message
into a completely different MIME entity. A leaf node could be translated so that it is a multi-level, nested
multipart entity. A message that has deeply nested MIME structure can be trandated into a single text part.

It is expected that most translations will work on simple leaf MIME entities, those that do not have atop
level type of mul ti part . In certain contexts, Eudora performsthe traversal of the nested MIME structure
and makes the datain the leaves available for trandation so the plug-in author doesn’t have to perform the
traversal.

Asis described in more detail later, each trandator may be offered each MIME entity in the MIME structure
to trandlate. It usually decides based on the MIME type whether or not it wishes to trandate the entity. If
the entity being translated is a multipart entity, then the data must be in MIME format. If it decidesto
trand ate the entity, the data is delivered in one of two formats as described in the next section.

2.3. Translated object data formats - the local non-MIME format

Asmentioned earlier, datafor atranslator can bein one of two formats, one of which isthe local or native
non-MIME format. Thelocal format isjust the plain dataasit normally isfor the particular platform.
Examples are Macintosh text (in Macintosh character set with CR line endings), DOS text, a JPEG file, or
aWord document. Datain MIME format has additional headers and encoding as described bel ow.

The actual format for each MIME entity is described by the standard or description for that MIME type
(e.g., an image/gif entity will be described by the MIME standard for that type, which most likely
references the standard for GIF images). Text formats however pose an unusual problem because they vary
significantly between the Macintosh, Windows, etc. and there are no MIME documents describing local text
formats. To solve this problem the trandation API defines atype tag for the local text format for each
platform.

On the Macintosh, the MIME type for text in the local format isappl i cati on/ x- mac-t ext .
Appl i cation/ x-mac-text hasCR asthe end of line and isin the Macintosh character set. The MIME
type returned by an on-request text translator should be the same appl i cat i on/ x- mac-t ext .

For Windows, text in the local format is of type text/ pl ai n, isin the ISO-8859-1 character set and has
linesending in CRLF. Similarly, the text returned by atranslator should be in the same format and the
MIME type should be t ext / pl ai n.

At present, enriched text is removed before trand ation in the on-request context, but not other contexts.

The above is perhaps a complicated way of saying that on the Macintosh a simple text translator should
accept and generate data of type appl i cat i on/ x- mac-t ext and it can operate on datain standard Macintosh
formats. Similarly for Windows it should accept and generate data of type t ext / pl ai n.

2.4. Translated object formats - the MIME Canonical Format

MIME formatted data for trandation is provided in all the tranglation contexts, except the on-request
context, where the datais limited to text. When MIME formatted dataiis provided, Eudora supplies the data
asfollows:

Eudora EMS API Page 10

Converts the base data objects to their canonical format as defined by its MIME type and subtype. The
most common canonicalization isto convert text so the line endings are CRLF and the character set to
astandard one like 1 SO-8859-1.

It applies content transfer encoding so the result is 7-bit clean limited line length data. Thisis done
using Eudora’ s usual algorithm for determining which transfer encoding is best. Eudora uses quoted-
printable transfer encoding for text data and base-64 for non-text data. Whether the dataistext or not is
determined by the MIME type mapping settings in Eudora.

It assembles the MIME entity with the appropriate MIME headers. These consist of the MIME-
Version, Content-type, and Content-transfer-encoding headers with appropriate parameters,
message part boundaries, etc.

Trandators that return full MIME should return similar entities. The MIME-version header should always
be included with one exception. The MIME version header should not be output by atranslator for
translations on outgoing messages on the Macintosh. Macintosh Eudora aways assumes MIME version 1
and generates the header for its outgoing messages. If the Content-type is omitted text/plain will be
assumed, and if the Content-transfer-encoding is omitted, 7bit will be assumed. Note that the entities
Eudora supplies will always be encoded for 7hit transport, however the translator can return the entity with
any standard transfer encoding aslong asit istagged correctly. Other MIME-related Cont ent - * headers can
be included. (For version 1 of the API binary encoding is not allowed. That is, if atrandationresultsina
binary object, the trandator should transfer encode it with something like base64 before passing it back to
Eudora).

Below is an example of text in the MIME format. The lines would end with CRLF and the datawould be in
this format no matter if the trandation is being done on the Macintosh or Windows. If it were not in

MIME format it would not have the extra header, nor the quoted printable transfer encoding, and the
character set might not be 1SO-8859-1.

Content-type: text/plain; charset=iso-8859-1
Content-transfer-encodi ng: quoted-printable

This is the nessage text and this =el is an a with an accent.

The APl usesthetagt ext/ pl ai n for the local format for Windows because the character set and end of line
character are the same as the Internet standard. The above entity in Windows local format would be as
follows and has no header or transfer encoding.

This is the nessage text and this is a an a with an accent.

Eudora EMS API Page 11

3. Display in the User Interface

Plug-ins and translators are displayed in the user interface in several places. On the Mac al plug-ins are
shown in the About Extended Message Services dialog box found under the apple menu. On Windows the
Message Plug-in Settings dialog is accessible under the Special menu.

Trangdlators that can operate in the ON_REQUEST context are displayed as menu items. They are enabled
for received messages, messages under composition, and most any editable text field found throughout
Eudora. When invoked they are performed immediately on the current text field (eg. a composition message,
areceived message, etc.). These menu items are only active when the user’ sfocusisin an editable text field
and should not be used a general hook for adding menus to Eudora.

Trandlations that can be operated in the Q4-transmission context are displayed as either checkableicons
(Macintosh) or in adrop-down list of checkable item (Windows) in the toolbar of the message composition
window. While the user is composing the message, they may be selected and desel ected.

The on-request translators may return atext message. If thisis returned it will be displayed as part of the
message.

Some tranglators operate without any user interface. These are translators that work in the on-arrival
context. They process messages as they are down-loaded from the mail server.

Attachers appear in the Message -> Attach sub-menu as menu items with the description on the menu.
They are always enabled when a new message is being composed, it simply attaches the returned files to the
message. When there is no new message in front, the Windows version will create a new message, then
call the attacher.

Soecial Tools appear in the Tool Menu on Windows and the Special Menu on Mac as menu items with the
description on the menu. They are aways enabled.

Eudora EMS API Page 12

4. The Translation Process

A trandator supplies two functions that are used in the translation processitself, ens_can_t ransl at e and
ens_translate file.

Trandlations may be performed in different contexts. These contexts are different events that happen to a
message, such asits arrival, display, or transmission. The details for each are described below. A given
translator can work in any number of these contexts. When atrandator is called by Eudorathe context it is
being called inis specified by a parameter so it may behave differently in different contexts.

When Eudora processes a message for trandation the function ens_can_t r ansl at e iscalled for each
potentially translatable MIME entity before actual trandation is attempted. In some cases thisisfor the
sake of efficiency sinceens_can_transl at e is more efficient than the full trandlation function. The
function ens_can_t ransl at e also has a special return code, namely EMBR_NOT_NOW to delay further
processing of a message to alater time. The main purpose of EMSR NOT_NOwis for atransator to delay all
further MIME parsing and tranglation. This may occur because the translator works on unparsed MIME
entities. It may also wish to preempt translation in a non-interactive context so the translation cab be
performed later in a context where interaction with the user is allowed. Note that on-display trandatorsare
required to return EMBR_NOT_NOWin the on-arrival context.

Thefunctionens_transl ate_fil e actually performsthe trandation. It is passed alarge number of
parameters, including the input MIME type, the location of the data to trandlate, the address of a progress
reporting function, and the e-mail addresses on the message. Exact details are given in Section six.

4.1. On-arrival

The on-arrival context processes messages as they are down-loaded to Eudora from the mail server. That is,
when Eudoraistalking to the POP server. In general, translators in this context should not interact with the
user or cause long delays (more than afew seconds) or they will disrupt the POP protocol session with the
mail server. This context is useful for automatically processing incoming messages. It is also necessary to
use this context so that translations can be performed in the on-display context. Thiswill not be necessary
in a future version when Eudora switchesto internal MIME storage.

The actual algorithm used by Eudorato call trandatorsisintegrated with Eudora' s MIME parsing. It
involves apre-order traversal of the MIME structure of the message (intermediate nodes are processed before
the leaves). As each MIME entity isvisited the ens_can_t r ansl at e function of each trandlator is called on
it. If it returns EMBR_CANT_TRANS, the next trandator istried. Thelist of transators that are tried are the
ones that indicate they work in the on-arrival context and are ordered by type as listed below. If
ens_can_transl at e returns EMSR_NOW the trandation isimmediately performed and the output of the
trandator replaces the MIME entity that was trandlated. After atrandation is made, the entire process of
checking each trandlator in the list at each node in the pre-order traversal is started over for that MIME
entity. When a complete pass is made through all translators for an entity without performing any

trand ation, the MIME parse of the entity is made and its sub-parts are processed. Since most messages are
not multipart and most will not be translated, this usually amounts to a single pass through the potential
trandlators.

If the ens_can_t ransl at e function returns EMBR_NOT_NOW then all parsing stops and the MIME entity as
it stands is written out for later processing. The entity iswritten to afile and alink to the fileis placed in
the original message. When the user clicks on the link, the translation process is resumed. This will be
changed in a future version when Eudora supports MIME storage. It may not be required that the user click
on an icon.

Eudora EMS API Page 13

In general, the order of the trandations in the on-arrival context is driven by the MIME typesin the received
message. When there are ambiguities, the order is by type asfollows:

EMST_CERT_MANAGEMENT (first)
EMST_PREPROCESS

EMST_SI GNATURE

EMST_COALESCED

EMST_COMPRESS| ON

EMST_GRAPHI C_FORMAT

EMST_TEXT_FORMAT

EMST_LANGUAGE (last)

Trandationsin the on-arrival context should not interact with the user. If they need to interact with the user
they should delay processing until the on-display context by returning EMBR_NOT_NOW A translator may
also vary the function it performs based on the context in which it is called. For example a signature
verification trandlator called in the on-arrival context may find it useful to fail silently if it does not have
the certificate needed for verification rather than interrupt the message down-load to prompt for a certificate.

Trandatorsin this context must accept MIME and generate MIME. That is, the EMBF_ REQU RES_M ME and
EMBR _GENERATES M ME flags are ignored and Eudora treats the trandlator asif they were set. Thus these
trandators must be prepared to remove content transfer encoding, and parse and generate basic MIME
structure. It is likely that this restriction will be removed in a future version.

4.2. On-display

Trandations in the on-display context are performed when a user clicks on atrandator icon that appearsin a
message body. The translator icon is put in the message body as aresult of theens_can_transl ate
function called in the on-arrival context returning EMSR_NOT_NOW When the user clicks on the icon, the
parsing, recursion, and translation on the MIME structure that was begun in the on-arrival context is
resumed. When the traversal is complete the resulting MIME entity is parsed and text parts are displayed to
the user, in the message window. Thisincludesicons for attachments that were part of the original message
or attachments that were generated as part of the translation process. Attachments can also be removed as
part of the translation process.

Important differences between this context and the on-arrival context arethat ens_can_t ransl at e must
never return EMBR_NOT_NOWand that trandations may interact with the user. The on-display context has the
same restriction as the on-arrival context that the input and the output must be MIME format.

When Eudora messages are stored in MIME format, trandations in this context may be performed
automatically when the message is displayed - that is when the user clicks on the message index to display
a particular message. There will be no need for the user to click on a trandator icon in the message body.

4.3. On-request

On-reguest trand ations are those that are performed on the currently displayed message. Trandationsin this
context are usually the simplest to create.

Trandators that work in this context are displayed in a menu item in a sub-menu of the Edit menu. When
the user selects one, the trandation is performed on the current message whether it is areceived message or
amessage under composition. If a section of the message is selected, then only the selection is processed.
When compl ete, the trandl ated data replaces the origina data and the message is marked as changed.
Tranglationsin this context may be fully interactive. If thereis no open current message or the user’s focus
isnot in an editable text field, then the menu items for these trandlations are disabled.

Since Eudora supports only translation of text itemsin this context, translators that cannot operate on text
are not placed in the menu at al. Eudora determines this by ens_can_t r ansl at e on the MIME type

Eudora EMS API Page 14

text/ pl ai n. On the Macintosh it also callsit on appl i cati on/ x- mac-t ext . If the result is EMBR_NOAtO
any of these types, the translator will be placed in the menu.

On-request translators may set the EMBR REQU RES M ME and EMBR_GENERATES M ME flags or not — they
areignored. Regardless of these flags the data type will bet ext / pl ai n and the line endings will be CRLF
and the trandlator should return the same to Eudora. On the Macintosh the local format (described in section
3.3) will be used if the flags are not set. If atrandation is attempted ont ext / enri ched, therich
formatting will be removed before trandation. Thisis not the case for other translation contexts.

4.4. Queue and call on transmission (Q4-transmission)

Tranglators that work in this context are displayed in the toolbar of the composition windows and may be
selected by the user. They are toggled turned on and off by clicking a button with the trandlator’ sicon on it
(Macintosh) or by selecting the translation from a drop-down menu (Windows). The trandation is actually
performed later when the message is being transmitted to the mail server via SMTP. If a message under
composition is saved and resumed later, the toggled state of all translators working in the Q4-transmission
context will be retained.

Trandation in this context must operate on the full MIME structure and must work on the whole message
(must set EMSF_GENERATES M ME, EMBF_REQU RES_M ME and EMBF_WHOLE_MESSAGE). Trandations are
performed in the reverse of the order listed above for on-arrival trandations. This ordering does prevent
certain useful chains of trandlations from being performed (e.g., first alanguage translation, then a text
format tranglation), but this disadvantage is out weighed by it being simpler to implement, and simpler for
the user.

A future API version may relax these restrictions and provide a full depth-first traversal of the MIME
structure. The EMBF_WHOLE MESSAGE flag indicates the trandlator wishes to operate on the whole message,
thusit will not be offered the intermediate nodes for trandlation. Thisis only of interest for translators that
function on multipart MIME entities.

Theens_can_transl at e function for this context is called after the user clicks the Send/Queue button.
This allows the tranglator to perform a quick check that the translation will be possible later when the
message is transmitted. If ens_can_t r ansl at e returns EMBR_CANT_TRANS and an error string, the string
will be displayed to the user, and the message will not be sent or queued. The user has the option of
toggling the trandation off or adjusting the condition that caused the trandlation for fail.

It is possible for the user to queue an incompatible set of trandlations (e.g., the MIME type output by one
tranglation is not acceptable input to the next).When this happens the user will receive an error and can then
go back and deselect trandations.

Trandlations in this context may be fully interactive. A future version of the APl may require that
tranglationsin this context not be interactive because delays due to interactivity can disrupt the SMTP
connection. This restriction will not be made until the on-completion context is functioning.

4.5. Planned for APl version 4 - Queue and call on completion
This context will not be supported until Eudora stores messagesin MIME format.

Trandators that set this option have their icon displayed in the top bar of the composition windows and
may be selected by the user. Then when the user clicks the Send/Queue button the trandation is performed.
They will be performed in the reverse of the order listed in the section above describing on-arrival
trandations and they will be performed with a depth-first traversal of the MIME structure rather than a pre-
order traversal. The output of the translator always replaces the original part.

Eudora EMS API Page 15

Note that it is possible for the user to queue an incompatible set of translations. The output of one
translator may not be suitable as input for the next. In this case translation will fail with an error message
when the user clicks the Send/Queue option. Thisis actually not avery serious concern becauseit is
anticipated that there are few trandators for this context that would interact in this way.

Trandations in this context may be fully interactive. Translators must also supply an icon suite or they
will not be displayed.

Note that if a particular translator says it can work this and the Q4-transmission context it will always be
called on completion and never on transmission.

Eudora EMS API Page 16

5. Attachment Plug-ins

When Attachment plug-ins are available, there will be amenu item for each oneinthe Message €
Attachment sub-menu. The number of Attachment Plug-insis returned in ems_plugin_init. For each
Attachment plug-in, ems_attacher_info iscalled. When auser in composing a message, these itemswill be
enabled. If an Attachment plug-in item is selected, ems_attacher_hook is called, and the plug-in can provide
a Ul for selecting or creating afile(s).

When Eudora actually sends an attachment, it determines the MIME type/subtype by looking it up in the
MIME mapping table. (See appendix A). The mapping provides for MIME type/subtype, Windows file
extension and Mac type/creator. The plug-in may want to make sure that a mapping is present for the file
typesit is going to attach when the ems_ attacher_info function is called and update it. Eudorawill handle
all processing of making the attachment a MIME message so it can be sent out over the Internet.

To insure a specific MIME structure of the message, the Attachment plug-in can create afilethat isa
MIME part, and identify it with the .mim suffix on Windows, or the (?? Type ?? creator) on the Mac.
These files must be complete MIME parts, al encoding, canonicalization, MIME headers, etc. must be
present in the file. Eudorawill not do any further processing on the file, it will simply put it on the wire
asit’'s sending out the message.

Eudora EMS API Page 17

6. Special Tools Plug-ins

When Special plug-ins are available, there will be placed on the Tools menu in Windows and on the Special
Menu on the Mac. These items will always be enabled.

When Special plug-ins are available, there will be a menu item for each one in the Tools menu on
Windows and the Special menu on the Mac. The number of Special plug-insis returned in

ens_pl ugi n_i ni t. For each Special plug-in, ens_speci al _i nfo iscaled. If aSpecia plug-initemis
selected, ens_speci al _hook is called, and the plug-in can do as it likes. Eudorawill wait until the
ens_speci al _hook function returns.

Eudora EMS API Page 18

Eudora EMS API Page 19

7. APl Reference

This section describesin full detail the calling interface, constants and related data structures. These
definitions are the same as found in the include ensapi - nac. h and ens- wi n. h. The basic dataitems and
their semantics for the API do not vary between the Macintosh and Windows platforms, but the function
declarations and data formats do vary. Having this variance between platforms makes the APl simpler and
less abstract for each platform, and also increases its efficiency. In the following sections both the

M acintosh and Windows declarations are shown.

For both the Mac and Windows platforms, header files, skeleton source code, and samples are part of the
SDK. In particular, this should help with some of the complexity in working with the Macintosh
Component manager. The author should be able to create a plug-in by creating the necessary C functions
and some associated resources.

7.1. Constants

Thefirst three letters, EMS, identify EMS API-related constants. The third letter groups related constants.
All constants should be stored as al ong (32 bits). The constants are identical on al platforms.

Return codes report the general success or failure of atranslation and are not intended to express all possible
results of atrandation. Usually more specific results are given via error messages that are displayed to the
user by Eudora.

[* ----- Return codes --- store as along --------------------- */

#defi ne EMSR_OK (oL) /* The transl ati on operation succeeded /
#defi ne EMSR_UNKNOWN_FAI L (1L) /* Failed for unspecified reason */
#defi ne EMSR_CANT_TRANS (2L) Don't know how to translate this */

#defi ne EMSR_| NVALI D_TRANS (3L)

3) The translator ID given was invalid /
#defi ne EMSR_NO_ENTRY

The val ue requested doesn't exist */

/*
/*
 NO_ (4 r*
#define EMSR_NO_| NPUT_FI LE (5L) /* Couldn't find input file */
#defi ne EMSR_CANT_CREATE (6L) /* Couldn't create the output file */
#defi ne EMSR_TRANS_FAI LED (7L) /* The translation failed. */
#defi ne EMSR_|I NVALI D (8L) /* lInvalid argunent(s) given */
#defi ne EMSR_NOT_NOW (9L) /* Transl ation can be done not in current
context */
#defi ne EMSR_NOW (1o0L) /* Indicates translation can be perfornmed
right away */
#defi ne EMSR_ABORTED (11L) /* Translation was aborted by user */
#defi ne EMSR_DATA_ UNCHANGED (12L) /* Trans OK, data was not changed */

Every translator must be one of the following types. The type is used to determine the ordering of
tranglations in certain contexts when ambiguities arise (see the previous section on The Trandation
Process). When, in aparticular plug-in, translators of type EMST_SI GNATURE and EMST_PREPROCESS are
selected together in theEMSF_Q4_TRANSM SSI ON context, and atranslator of type EMST_QQALESCED is
available it will be called instead of the two trandlators. Translators of type EMST_CGQALESCED should not
supply anicon if it is desired that they not be displayed and selectable on the composition window.
Basically the trandation types are used for ordering and grouping the trandations and for nothing else.

[* ----- Transl ator types --- store as along ---------------------------- */
#define EMST_NO TYPE (-1L)

#define EMST_LANGUAGE (0x10L)

#defi ne EMST_TEXT_FORMAT (0x20L)

#define EMST_GRAPHI C_FORMAT (0x30L)

#defi ne EMST_COMPRESSI ON (0x40L)

#defi ne EMST_COALESCED (0x50L)

#defi ne EMST_SI GNATURE (0x60L)

#def i ne EMST_PREPROCESS (0x70L)
#defi ne EMST_CERT_MANAGEMENT (0x80L)

The following flags specify critical information about atranslator. They specify which context it may
operate in, whether or not it can be called on the whole message or not, and the format of the input and

Eudora EMS API Page 20

output data. Eudora uses these flags to decide when to call the trandlator, and how to format and process the
input and output data from the translator.

[* - Transl ator info flags and contexts --- store as a long ---------- */
/* Used both as bit flags and as constants */

#defi ne EMSF_ON_ARRI VAL (0x0001L) /* Call on nmessage arrivial */

#defi ne EMSF_ON_DI SPLAY (0x0002L) /* Call when user views nmessage */
#defi ne EMSF_ON_REQUEST (0x0004L) /* Call when selected frommenu */
#defi ne EMSF_Q4_TRANSM SSI ON (0x0010L) /* Queue and call on transm ssion

of a message */
#defi ne EMSF_WHOLE_MESSAGE (0x0200L) /* Works on the whole nmessage even if
it has sub-parts. (e.g. signature) */
#defi ne EMSF_REQUI RES_M ME (0x0400L) /* Itens presented for translation
should be M ME entities with
canoni cal end of line representation,
proper transfer encoding
and headers */
* Data produced will be MM format */
* Al headers in & out of trans when
M ME format is used */
#defi ne EMSF_BASI C HEADERS (0x2000L) /* Just the basic headers */

#defi ne EMSF_GENERATES M ME (0x0800L) /
#def i ne EMSF_ALL_HEADERS (0x1000L) /

#defi ne EMSF_DEFAULT_Q ON (0x4000L)/* Causes queued translation to be on
for a new nessage by default */
/* all other flag bits in the | ong are RESERVED and may not be used */

Thefinal following constants define the API version number, the component type used on the Macintosh,
and theout _codes that should be returned fromens_t r ansl at e when called on atrandator of type
EMBT_SI VATURE. The component type goes in the t hng resource of the component.

[* ----- The version of the APl defined by this include file ------------- */
#defi ne EMS_VERSI ON (3) /* Used in plug-ininit */
#defi ne EMS_COVPONENT "EuTL' /* Maci ntosh conponent type */

7.2. Macintosh data structures

[* ----- MME Paranms ---------------------------- */
typedef struct ensM MEparanS *ensM MEPar anP, **ensM MEpar anmH;
typedef struct ensM MeEparantS {

| ong si ze;

Str63 nane; /* M ME paraneter nane */

Handl e val ue; /* handl e size determnes string length */
enmsM MEpar anH next ; /* Handl e for next paramin list */

} enmsM MEpar am

[* ----- MM Data ----------------------------- */
typedef struct ensM MEtypeS *ensM MEt ypeP, **ensM MEt ypeH,
typedef struct emsM MEtypeS {

| ong si ze;

Str63 m meVer si on; /* M ME- Version: header */

Str63 m meType; /* Top-level M ME type: text,nessage...*/
Str63 subType; /* sub-type */

emsM MEpar amH par ans; /* Handle to first parameter in list */
Str63 contentDisp; /* Content-Disposition */

ensM MEpar amH content Paranms; /* Content-Disposition paraneters*/

} ensM MEt ype;

[* ----- User Address ------------------------- */
typedef struct ensAddressS *ensAddressP, **ensAddressH,;
typedef struct emsAddressS {

| ong si ze; /* Size of this data structure */
StringHandl e addr ess; /* tional directory for config file */
StringHandl e real nane; /* Users full nanme from Eudora config */
enmsAddr essH next ; /* Linked list of addresses */

} emsAddress;

[* ----- Header Data ---------------------------- */
typedef struct ensHeader Dat aS *ensHeader Dat aP, **ensHeader Dat aH;
typedef struct ensHeader DataS {

| ong si ze; /* Size of this data structure */
ensAddr essH t o; /* To Header */

ensAddr essH from /* From Header */

StringPtr *subj ect ; /* Subj ect Header */

ensAddr essH cc; /* cc Header */

ensAddr essH bec; /* bcc Header */

Eudora EMS API Page 21

Handl e rawHeaders; /* The 822 headers */
} ensHeader Dat a;

[* ----- How Eudora is configured ------------- >/
typedef struct ensMil ConfigS *ensMil ConfigP, **enmsMail ConfigH;
typedef struct enmsMail ConfigS {

| ong si ze; /* Size of this data structure */
FSSpec configDir; /* Optional directory for config file */
ensAddr ess user Addr ; /* Current users address */

} enmsMai | Confi g;

[* - Plugin Info --------m-mmmmoma oo */
typedef struct ensPluginlnfoS *ensPl ugi nl nfoP, **ensPl ugi nl nf oH;
typedef struct ensPl uginlnfoS {

| ong si ze; /* Size of this data structure */
| ong id; /* Place to return unique plugin id */
| ong numlr ans; /* Place to return num of translators */
| ong numAttachers; /* Place to return num of attach hooks */
| ong nuntSpecials; /* Place to return num of special hooks */
StringHandl e desc; /* Return for string description of plugin
*
/
Handl e i con; /* Return for plugin icon data */

} emsPl ugi nl nf o;

[* - Translator Info ------------uumonnnn */
typedef struct ensTranslatorS *ensTranslatorP, **ensTransl atorH;
typedef struct ensTranslatorS {

| ong si ze; /* Size of this data structure */

| ong id; /* ID of translator to get info for */

| ong type; /* translator type, e.g., EMST_xxx */
unsi gned | ong flags; /* translator flags */

StringHandl e desc; /* translator string description */
Handl e i con; /* translator icon data */

StringHandl e properties; /* Properties for queued translations */

} ensTransl at or;

[* ----- Menu ItemInfo --------------------- */
typedef struct enmsMenuS *enmsMenuP, **ensMenuH;
typedef struct emsMenuS {

| ong si ze; /* Size of this data structure */
| ong id; /* ID of nenu itemto get info for */
StringHandl e desc; /* translator string description */

} enmsMenu;

[* ----- Translation Data -------------------- */
typedef struct ensDataFileS *ensDat aFil eP, **ensDat aFil eH;
typedef struct ensDataFileS {
| ong si ze; 5* Size of this data structure */
*

| ong cont ext; The context of the Translator EMSF_***
*/

ensM MEt ypeH m nmel nf o; /* MME type of data to check */

ensHeader Dat aP header ; /* Pointer to Header Data */

FSSpec file; /* The input file name */

} ensDat aFi l e;

[* ----- Resulting Status Data -------------- */
typedef struct ensResultStatusS *ensResult StatusP, **ensResult StatusH,
typedef struct ensResultStatusS {

| ong size; [/* Size of this data structure */

StringHandl e desc; /* Returned string for display with the result */
StringHandl e error; /* Place to return string with error nessage */

| ong code; /* Return for translator-specific result code */

} ensResul t St at us;

[* ----- Progress Data ---------------------------- */
typedef struct ensProgressDataS *ensProgressDat aP, **ensProgressDat aH;
typedef struct ensProgressDataS {

| ong si ze; /* Size of this data structure */
| ong val ue; /* Range of Progress, percent conplete */
StringPtr message; /* Progress Message */

} ensProgressDat a;

Eudora EMS API Page 22

On the Macintosh, strings passed from a trandator to Eudora (such as descriptions, error messages and

email addresses) are Pascal strings. Eudorawill pass a pointer to the location where the Handl e to the string
should be returned. The translator must all ocate this Handl e with NewHandl e() so that Eudora can freeit
with Di sposeHand! e() .

File path names are not used. Instead Eudora passes a pointer to an FSSpec on the stack. (Translators never
return file names to Eudora).

The structures representing a MIME type are also Handl es allocated with NewHand! e() . Limited-length
Pascal strings are used for all components of the MIME type, except for parameter values. The parameter
valueisa Handl e to a string the length of which is determined by the size of the Handl e. The parameter
valueis not a Pascal string because its length can potentially exceed that of a Pascal string. It is also not
NUL L-terminated as the length comes from the handle size.

When Eudora passes a pointer to alocation in which it expects data to be returned by atrandator, it may

pass NULL. Translators must check that the pointer to the location is not NULL before placing avaluein
it.

Eudora EMS API Page 23

7.3. Windows data structures

[* ----- MME Paranms ---------------------------- */
typedef struct ensM MEparanS FAR*ensM MEPar anP;
typedef struct ensM MeEparantS {
| ong si ze;
LPSTR nane; /* M nme paraneter nane (e.g., charset) */
LPSTR val ue; /* param value (e.g. us-ascii) */
ensM MEPar anP next ; /* Linked list of parameters */
} ensM MEpar am

[* ----- MM INfo -----------cmeim e */
typedef struct ensM MEtypeS FAR*ensM MEt ypeP;
typedef struct emsM MEtypeS {

| ong si ze;

LPSTR ver sion; /* The M ME- Version header */

LPSTR type; /* Top-level MME type */

LPSTR subType; /* sub-type */

ensM MEPar anP par ans; /* M ME paraneter list */

LPSTR contentDi sp; /* Content-Disposition */

emsM MEPar anP cont ent Parans; /* Content-Disposition paraneters*/

} emsM MEt ype;

[* - User Address -----------mmommmmma oo */
typedef struct ensAddressS FAR*ensAddressP;
typedef struct ensAddressS {

| ong si ze; /* Size of this data structure */

LPSTR addr ess; /* Optional directory for config file */
LPSTR real nane; /* Users full nanme from Eudora config */
ensAddr essP next ; /* Linked list of addresses */

} enmsAddress;

[* ----- Header Data ---------------------------- */
typedef struct ensHeader Dat aS FAR*ensHeader Dat aP;
typedef struct ensHeader DataS {

| ong si ze; /* Size of this data structure */
ensAddr essP to; /* To Header */

ensAddr essP from /* From Header */

LPSTR subj ect; /* Subj ect Header */

ensAddr essP cc; /* cc Header */

ensAddr essP bcc; /* bcc Header */

LPSTR rawHeader s; /* The 822 headers */

} ensHeader Dat a;

[* ----- How Eudora is configured ---------------------------- */
typedef struct enmsMail ConfigS FAR*ensMai | Confi gP;
typedef struct ensMail ConfigS {

| ong si ze; /* Size of this data structure */

HW\D FAR*eudor aWwhd; / * Eudora's main wi ndow */

LPSTR configDir; /* Optional directory for config file */
ensAddr ess user Addr ; /* Users full nane from Eudora config */

} emsMai | Confi g;

[* - Plugin Info ----------cmmmmmma oo */
typedef struct ensPl ugi nl nfoS FAR*ensPl ugi nl nf oP;
typedef struct ensPl ugi nlnfoS {

| ong si ze; /* Size of this data structure */

| ong numlr ans; /* Place to return numof translators */

| ong numAt t achers; /* Place to return num of attach hooks */

| ong nunSpeci al s; /* Place to return num of special hooks */
LPSTR desc; /* Return for string description of plugin

*/
| ong id; /* Place to return unique pluginid */
HI CON FAR*i con; /* Return for plugin icon data */
} ensPl ugi nl nf o;

[* ----- Translator Info ---------------------------- */
typedef struct ensTransl atorS FAR*ensTransl at or P;
typedef struct emsTranslatorS {

| ong si ze; /* Size of this data structure */

| ong id; /* 1D of translator to get info for */
| ong type; /* translator type, e.g., EMST_xxx */
ULONG fl ags; /* translator flags */

LPSTR desc; /* translator string description */

HI CON FAR*i con; /* translator icon data */

Eudora EMS API Page 24

LPSTR properties; /* Properties for queued translations */
} ensTransl at or;

[* ----- Menu ItemInfo ------------mmmmmi */
typedef struct enmsMenuS FAR*enmsMenuP;
typedef struct emsMenuS {

| ong si ze; /* Size of this data structure */
| ong id; /* ID of translator to get info for */
LPSTR desc; /* translator string description */

} enmsMenu;

A Translation Data ---------------------------- */
typedef struct ensDataFil eS FAR*ensDat aFi | eP;
typedef struct ensDataFileS {

| ong si ze; /* Size of this data structure */

| ong cont ext; /* The context of the Translator EMSF_***
*/

enmsM MEt ypeP i nfo; /* MME type of data to check */

enmsHeader Dat aP header ; /* Pointer to Header Data */

LPSTR fil eName; /* The input file name */

} ensDat aFi | e;

[* ----- Resulting Status Data ---------------------------- */
typedef struct enmsResultStatusS FAR*emsResul t St at usP;
typedef struct ensResultStatusS {

| ong size; /* Size of this data structure */

LPSTR desc; /* Returned string for display with the result */
LPSTR error; /* Place to return string with error nessage */

| ong code; /* Return for translator-specific result code */

} emsResul t St at us;

[* - Progress Data -------------“-“------------ */
typedef struct ensProgressDataS FAR* ensProgressDat aP;
typedef struct ensProgressDataS {

| ong si ze; /* Size of this data structure */
| ong val ue; /* Range of Progress, percent conplete */
LPSTR message; /* Progress Message */

} emsProgressDat a;

For Windows, ASCI| strings for descriptions, error messages, file names, addresses and components of the
MIME type structure are all NULL-terminated strings. They may be allocated any way the plug-in author
wishes and isreferred to as the plug-in’sinternal alocator. Eudorawill call ens_f r ee as supplied by the
plug-in to free the storage when it is finished with the data.

Theiconsreturned by ens_pl ugi n_i nit for the whole plug-in should be a 32x32 H GON. Theicons for the
individual translators should be a 16x16 H QON (creating the 16x16 H GON may involve creating a H CON
and deleting the 32x32 part). All the icons should be allocated with the plug-insinternal allocator so Eudora
can freethem by calingens_free.

When Eudora passes a pointer to alocation in which it expects data to be returned by atrandator, it may
pass NULL. Translators must check that the pointer isnot NULL before placing avalueinit.

7.4. Building Macintosh components

As mentioned previously, plug-ins on the Macintosh are implemented as Components. Components are
used, rather than other mechanisms such as Code Fragments, because they work on all Macintosh hardware
from the 68000 to the PowerPC, and on MacOS system 7.0 through current versions. It is also expected
they will be supported in future versions of MacOS. Though creating a component can be complicated, the
SDK provides most of the needed glue source code, and the job should be easier.

In general the plug-in author needs to implement a minimal set of the entry point functions. When the
Component is built the t hng resource of the component must have type ‘euTL’. The version number
specified in thet hng resource must be avalid translation APl version number. The upper 16 bits can be set
to the value of the constant EM5_VERSI CN from the APl includefiles. The sub-type resource is hot used,

Eudora EMS API Page 25

but it must be unique or the translator will not be loaded by the Component Manager. Thereis currently no
registry for sub-types to guarantee their being unique, but this not expected to be a problem. The author
should make one up of their own. It must not be all lower case |etters as those are reserved by Apple. Other
fields of the component resource such as flags, icon, and descriptions are ignored.

The SDK includes two files for building aplug-in. Thefirst, ensapi - nac. h, includes the constants and
data structures listed here. It includes prototypes for the eight functions that are needed. For building the
translator as a component, the file ens- conponent . ¢ can be used as the component main. It includes the
necessary component manager glue to accept the standard component manager calls aswell asthe API calls.
When it receives the API calls, it sets up the calling stack frame and then calls the functions which are
proto-typed in ensapi - mac. h. Thus ens- conponent . ¢ should be compiled as anormal C file and linked
into the component.

In order to compile ens- conponent . ¢, the template file user t r ans. h must be modified for the plug-in
being authored. A sampleisincluded. It containstwo sections. One is the definition of the structure

t1 Userd obal s. Thisisastructure that is passed as the first argument for all the API calls. The translator
can define data it wants to be carried between callsto the API and storeit here. This structureis
automatically allocated and managed by the component manager glue in ens- conponent . c. Alsoin
usertrans. h are C pre-processor definitions for eight constants that indicate whether an API call is
implemented by the particular plug-in. Each constant should be defined to either t rue or f al se.

Eudoralooksin a pre-defined set of directories for the Components that are EMS API plug-ins. Thisis done
at start-up time. Each plug-in discovered isloaded and becomes active. The plug-ins must have at hng
resource as described above or they will not be loaded. For the Macintosh, the paths are:

the folder the Eudora applicationis in
the sub fol der Eudora Stuff of the folder the applicationis in
the extensions folder in the active systemfol der

Note that the Eudora folder (where Eudora stores mailboxes and related files, but not the application file) is
not searched for plug-ing!

7.5. Building Windows DLLs

Building atrandation DLL is straightforward because al that isneeded isaDLL that implementsa
minimal subset of the API entry point functions using the standard “C” calling convention.

Eudoralooksin a pre-defined set of directories for Windows DLLsthat are EMS API plug-ins. Thisisdone
at start-up time. Each plug-in discovered is loaded and becomes active. For Windows the directories are;

The sub-directory plugins of the directory the Eudora .exe fileis in
The sub-directory plugins of the mail directory

The fact that a particular DLL isan EMS API DLL is determined by checking that it implements the
ens_pl ugi n_version, ens_plugin_init and oneof ens_transl ator_info, ens_attacher_info or
ens_speci al _i nfo functions.

7.6. Efficiency considerations

Most of the functionsin a plug-in, except the actual trandation, can usually be implemented with avery
small amount of code. These functions are also called much more frequently than the actua trandation
functions. Thusin some cases it may be advantageous to implement a translator in two parts, the smaller
part which isloaded in memory all the time, and the larger part which is only loaded when translations are
to be performed.

Eudora EMS API Page 26

On the Macintosh, this second part can be another component, a shared library or a code fragment. Nothing
about the API precludes any of these, and it is up to the trandator author to decide which is to be used based
on which platforms are to be supported.

A similar strategy may be adopted with Windows where the bulk of the translation function isimplemented
asasecond DLL that isloaded only when atrandation is being performed.

Eudora EMS API Page 27

7.7. Get the API version number that this plug-in implements

Macintosh:
pascal | ong ems_plugin_version(
short *api _version /* Out: Place to return api version */
)

Windows:
extern "C" |l ong W NAPI enms_plugin_version(
short FAR* api _version /* Out: Place to return api version */
)

Eudora calls this function once when it is loading the plug-in to determine what version of the API it
implements. The API version that should be returned is defined in the API include files as EMS_VERSI ON.
Mac Eudora 3.1 will support v1 & v3. Windows Eudora 3.0.1 will support v2 & v3.

On the Macintosh, Eudora checks thever si on string in the t hng resource as it is loading the plug-in.

Parameters
€ apiVersion

Put the version of the Plug-in's API.
Return Value

EMSR_OK: All is OK, Eudora will continue loading plug-in.
Anything else: Eudora will unload the plug-in and not call any more of its functions.

Eudora EMS API Page 28

7.8. Initialize plug-in and get its basic info

Macintosh:
pascal long ens_plugin_init(
Handl e gl obal s, /* Qut: Return for allocated instance structure
*/
short eudor aAPI Ver si on, /* In: the Version of the APl Eudora is using */
ensMai | Confi gP mail Confi g, /* In: Eudora mmil configuration */
ensPl ugi nl nfoP pl ugi nl nfo /* Qut: Return Plugin Information */
)
Windows:
extern "C" long W NAPI ems_plugin_init(
void FAR * gl obal s, /* Qut: Return for allocated instance structure
*
/
short eudor aAPI Ver si on, /* In: the Version of the APl Eudora is using */
ensMai | Confi gP mail Confi g, /* In: Eudoras mmil configuration */
ensPl ugi nl nf oP pl ugi nl nfo /* Qut: Return Plugin Information */
)

Thisfunction is called once by Eudora as the plug-in isloaded. It is a good place to do plug-in specific
initializations.

Parameters

€ globals
Return here the pointer to globals that will be passed back in the rest of the functions. This
should be used for global data in the plug-in scope.

For the Macintosh, the globals argument is a handle to a data structure holding the plug-
in’s global state. It is passed to all functions. The Component Manager takes care of
carrying this between calls. If the plug-in is authored using SDK component main, ems-
component.c, then this structure should be defined in usertrans.h.

For Windows, the ems_plugin_init function must allocate this storage and return a pointer to
it in the location pointed to by the globals parameter. Eudora will then pass this pointer into
all other translation API calls for that plug-in-in. It should be de-allocated in the
ems_plug_in_finish function.

eudoraAPIVersion
The version of the API Eudora is using.

mailConfig

&ize si zeof (emsMailConfig)
<€onfigDir

The path of a folder in which is the suggested location for a plug-in’s own configuration
data. This will be the user’s mail directory + the plug-ins directory. This path varies as
the Eudora folder and setting path varies, thus a plug-in’s settings will vary with the
Eudora settings if the user has multiple Eudora setups on the system.

€userAddr
The userAddr -> realname is the user’s human name as entered in the “Real Name” setting
of the dominant personality.
The userAddr -> address is the rfc-822 address the user has configured as their return
address, or if no return address has been configured, it is the POP account of the
dominant personality.

plugininfo

Eudora EMS API Page 29

&ize si zeof (.emsPlugininfo)
€ id
Each plug-in must have a unique 1D number and return it in the pl ugi n_i d parameter.
These are available from an email auto-responder by sending a message to <emsapi-

ids@qualcomm.com>. See section 2.3 for more details on the auto-responder.
€ numTrans

The total number of translators in this plug-in. Translator IDs range from 1 to numTrans.
€ numAttachers

The total number of special menu items in this plug-in. IDs range from 1 to

numAttachers.
€ numSpecials

The total number of special menu items in this plug-in. IDs range from 1 to

numSpecials.
€ desc

A short string suitable for a splash or about screen and should include the plug-in version
number. As with all strings returned to Eudora, on the Mac it must be allocated with

NewHand! e() and on Windows with the plug-in’s internal memory allocator.
€ icon

The icon is shown in the plug-ins about box. On the Macintosh it should be an icon
suite allocated with NewHandl e(). For Windows it should be a 32x32 H GO\ allocated
with the plug-ins own allocator function.

Return Value

EMSR_OK: All is OK, Eudora will continue loading plug-in.
Anything else: Eudora will unload the plug-in and not call any more of its functions.

Eudora EMS API Page 30

7.9. Get basic translator info

Macintosh:
pascal | ong ems_translator_info(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
ensTransl atorP transl nfo /* In/Qut: Return Translator Information */

)

Windows:
extern "C' long WNAPI ens_transl ator_info(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
enmsTransl atorP translnfo /* In/Qut: Return Translator Information */

Thisfunction is called for each translator ID by Eudora asit buildsitsinterna lists of translators while it
starts up. Note that any of the pointers to places to return data may be NULL so Eudora does not have to
request all the details at once. Some items like the flags and types will be loaded once initially, while others
such asthe icon may be retrieved each timeiit is needed.

Parameters

€ @lobals

The pointer to the globals is passed back for the translator to use.
transinfo

&ize sizeof (ensTransl ator)
€
The i d selects the particular translator in the plug-in for which the data is to be returned.
€ type
This describes what type of translator this is (e.g., EMST_LANGUAGE), it must be one of the

types that start as EMST_ .
€ flag

The flags are made up by “ORing” together a set of the constants starting with EMSF_. This
specifies the contexts in which a translator can be called.
If EMSF_Q4 COMPLETION is set, EMSF_DEFAULT_Q_ON will default the translator to

on.
€ desc

The description is a short string that is used for pull-down menu items. It is the only thing
that identifies a translator on the menu so it should include something that indicates which

plug-in it belongs to. An example might be “AcmeTrans Spanish-English."
€ icon

The icon is used for presentation to the user in several places. On the Macintosh an icon suite
should be returned and should be allocated using NewHandl e() . For Windows, the icon should
be a 16x16 H OO\ allocated with the plug-in’s memory allocator.

Return Value

EMSR_OK: All is OK, Eudora will continue load up the translator.
Anything else: Error will be logged.

Eudora EMS API Page 31

7.10. Check to see whether a translation can be performed

Macintosh:
pascal long ens_can_translate_file(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
ensTransl atorP trans, /* In: Translator Info */
ensDat aFi | eP i nTransDat a, /* In: What to translate */
enmsResul t StatusP transStatus /* Qut: Translations Status information */

);

Windows:
extern "C'" |long WNAPI ens_can_transl ate(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
ensTransl atorP trans, /* In: Translator Info */
ensDat aFi | eP i nTransDat a, /* In: What to translate */
ensResul t StatusP transStatus /* Qut: Translations Status information */

)

This function checks to see whether a data item can be trandated. It is called by Eudora before every
trandation is attempted and in some cases to determine whether atrand ation can be performed in alater
context on some data. The t rans- >i d specifies which translator from the plug-inis being called. The

i nTransData -> cont ext parameter isal ong with only one bit set to indicate the context (e.g., :
EVMBF_ON ARRI VAL, or EMBF_Q4 TRANSM SSI ON). The MIME type of the input datais always provided in
theinTransData parameter.

Parameters

€ @lobals
The pointer to the globals is passed back for the translator to use.
transinfo
&ize sizeof (ensTransl at or)
€d
The i d selects the particular translator in the plug-in for which the data is to be returned.
€roperties
Only used when in the EMSF_Q4 TRANSMISSION context. ems_queued_properties can set
this.

inTransData
&ize sizeof (ensTransl ator)
€ontext
This is a long with only one bit set that represents the current context (e.g.,:
EMSF_ON_ARRIVAL, or EMSF_Q4_TRANSMISSION)
€afo
The MIME type of the input data. This is what should be checked to see if the translator
wants to translate this message.
header

&ize si zeof (emsHeaderData)

€

€om

€ubject

€c

€cc
These fields will be populated when EMSF_BASIC_HEADERS is set for the translator. They
are read only.

®wHeaders
This field will be populated with the message headers when EMSF_ALL_HEADERS is set for

the translator. They are read only.

transStatus

&ize si zeof (emsResultStatus)
€ error

Eudora EMS API Page 32

If error is returned, Eudora will display this in a error dialog. If there was no error, set to

NULL.
€ code

Return for translator-specific result code

Return Value

EVBR_NOW The translator will translate this message. ems_translate_file will be called next.

EVBR_NOT_NOW The translator will translate this message, but not now. When writing an ON_DISPLAY translator,
when receiving the message ON_ARRIVAL, check to see if this is a message that this plug-in can tranlate later, then

return EMBR_NOT_NOWso it will be called in the ON D PLAY context.
EVMBR_CANT_ TRANS: This is not a message that this translator can translate.

Anyt hi ng el se: Failure. This will cause Eudora to put up an error message associated with the return. Fill in
transSt at us->err or if you want Eudora to display an error. EMBR (Kiis considered a failure return.

Eudora EMS API Page 33

7.11. Performing translations (file version)

Macintosh:
pascal long enms_translate_fil e(
Handl e gl obal s,
ensTransl atorP trans,

/ Pointer to plugin instance structure */
/
emsDat aFi | eP inFile, /
/
/
/

In:

In: Translator Info */

In: What to translate */

Func to report progress/check for abort */
Qut: Result of the translation */

Qut: Translations Status information */

ensProgress progress,
ensDat aFi |l eP outFil e,
ensResul t St at usP transSt at us

E R I S

)

Windows:
extern "C'" l1ong WNAPI ens_transl
void FAR * gl obal s,
ensTransl atorP trans,

ate
/*
/*
ensDat aFi | eP inFile, /*
»
/*

_file(

I'n: Pointer to plugin instance structure */
In: Translator Info */

In: What to translate */

Func to report progress/check for abort */
Qut: Result of the translation */

Qut: Translations Status information */

ensProgress progress,
ensDat aFi | eP outFil e,
ensResul t St at usP transStat us

)

This function performs the actual translation. Note that ens_can_t r ansl at e isaways called by Eudora
before this function is called so the trandator author need not make the same checks here. This function
will only be called if ens_can_t ransl at e returns EMSR_NON

The trandator may behave different waysin different contexts. For example when verifying asignature in
the automatic on-display context, it may choose to fail if the certificate necessary to verify is unavailable,
but in the on-request context it may prompt the user to locate the certificate.

For trandlations on message text, the temporary files are deleted immediately after the trandation is
complete. Attachments, however are not deleted until the user removes them. Thiswill change when Eudora
switches to using MIME storage internally.

Parameters

€ <@lobals

The pointer to the globals is passed back for the translator to use.
transinfo

&ize sizeof (ensTransl ator)
€d

The i d selects the particular translator in the plug-in for which the data is to be returned.
€roperties

Only used when in the EMSF_Q4_ TRANSMISSION context. ems_queued_properties can set

this.

inFile
&ize sizeof (ensTransl ator)
€ontext
This is a long with only one bit set that represents the current context (e.g.,:

EMSF_ON_ARRIVAL, or EMSF_Q4_TRANSMISSION)
€fo

The MIME type of the input data. This is what should be checked to see if the translator

wants to translate this message.
header

&ize si zeof (emsHeaderData)

These fields will be populated when EMSF_BASIC_HEADERS is set for the translator.
®&wHeaders

Eudora EMS API Page 34

This field will be populated with the message headers when EMSF_ALL_HEADERS is set for

the translator.
€eName

The file to be translated. If EMSF_REQUIRES_MIME is settransl nf o->f | ag
ems_translator_info is called, all the headers will be supplied in the file. If this is the top
most part, all the top most headers will be there, if this is a part, only the part’s headers will
be there.

progress
The translator should call the function periodically with an argument between O (just begun)
and 100 (complete) to indicate its progress. The translator should check the return value from
the function. If the value is 1 it should abort the translation, and if 0 it should continue. A
translator may display its own progress status and not make use of the one which Eudora
supplies. It should still call the progress function periodically with an argument of -1 to check
for an abort. If the call to the progress function returns 1 indicating abort at any time, the
translation must be aborted. In other words, the abort indication must never be ignored.

outFile

&ize sizeof (ensTransl ator)
€ info

The translator must always return the correct MIME type of the translation output in this
parameter even if the translator generates MIME. Thus, if the translator is unwrapping a MIME
object it must parse the Cont ent - Type - header and return its value in out _ni me. This also
implies that translators that generate MIME will return the resulting output MIME type in two
places, in the actual data and in the out _mi ne parameter.

Except for translations in the on-request context, the input and output MIME types must be
different in order to avoid an infinite translation loop. This can be done by adding a MIME
parameter to the MIME type to indicate a translation has been performed. A good parameter
name is x- eudor a- t r ansl at ed, and a good value is the name of the translator and the context
(e.g., spanish-english-on-arrival). Such a parameter will be ignored by all other MIME
parsing. The translator should check for this parameter in its ens_can_t r ansl at e function.

€&eName
An empty output file is created by Eudora, and the name of this file is passed into the
translator. The translator should write its output data into the file. If the translation is aborted
Eudora will clean up and remove this file.

transStatus

€ize si zeof (emsResultStatus)
€ desc

If desc is returned it will be displayed in the message window adjacent to the entity just

translated along with some visual indication that it is tied to the entity.
€ error

If error is returned, Eudora will display this in a error dialog. If there was no error, set to

NULL.
€ code

For most translations the out _code is ignored, but for translations of type EMST_SI GNATURE it
should be one of the constants EMSC SI GK, EMBC_SI GBAD, or EMBC_SI GUNKNOM to indicate
the status of the signature. Eudora displays the bar that ties the icon and status message to the
translated text differently, depending on the result of the signature verification.

Return Value

EVBR_CK: The translator will translate this message. ems_translate_file will be called next.

EVBR_DATA UNCHANGED: Eudora will leave the original text in the message and ignore the returned outFile data.
Only applicable in the OnRequest state. In other states, this will be treated as an error.

Anyt hing el se: Failure. This will cause Eudora to put up an error message associated with the return. Fill in
transSt at us->error if you want Eudora to display an error.

Eudora EMS API Page 35

7.12. Finish use of a plug-in

Macintosh:
pascal long enms_plugin_finish(
Handl e gl obal s /* In: Pointer to plugin instance structure */
)
Windows:
extern "C'" | ong W NAPI ens_pl ugin_finish(
voi d FAR* gl obal s /* In: Pointer to plugin instance structure */
)

This gives the plug-in a chance to free allocated memory, saved state information, etc. Windows translators
should de-allocate the globals memory, but Macintosh translators should not.

Parameters

€lobals
The pointer to the globals is passed for clean up.

Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will log.

Eudora EMS API Page 36

7.13. Free API data structures (Windows only)

extern "C' long WNAPI ens_free(
void FAR* nmem /* Menory to free */
)

Thisis called by Eudorato free data structures passed from a plug-in to Eudora. This dataincludes strings,
addresses, and the MIME type data structure. Thisis not used on the Macintosh since al dataoniit are
Handles allocated with standard functions.

Parameters

€em
The pointer to the memory is passed for clean up.

Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will log.

Eudora EMS API Page 37

7.14. Plug-in Settings Dialog

Macintosh:
pascal |ong ens_plugi n_config(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
ensMai | Confi gP mail Config /* In: Eudora mail info */
)
Windows:
extern "C' |l ong W NAPI ens_pl ugi n_confi g(
void FAR gl obals, /* In: Pointer to plugin instance structure */
ensMai | ConfigP mail Config /* In: Eudora mail info */
)

Theicon and name of the plug-in will appear in aplug-ins “Installed Plugins’ dialog selected from the
“Message Plugins Settings’ item under the “ Special” menu. When the user selects a plug-in and clicks the
“Settings...” button, this function will be called. The plug-in should put up its settings panel, interact with
the user and store the result.

After thisfunction is called, Eudorawill call ems_trans_info for each trandlator to see if flags have changed.

Parameters

€lobals
The pointer to the globals is passed back for the translator to use.
mailConfig
€onfigDir

The path of a folder in which is the suggested location for a plug-in’s own configuration
data. This will be the user’s mail directory + the plug-ins directory. This path varies as
the Eudora folder and setting path varies, thus a plug-in’s settings will vary with the
Eudora settings if the user has multiple Eudora setups on the system.

€serAddr
The userAddr -> realname is the user’s human name as entered in the “Real Name” setting
of the dominant personality.
The userAddr -> address is the rfc-822 address the user has configured as their return
address, or if no return address has been configured, it is the POP account of the
dominant personality.

Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will log.

Eudora EMS API Page 38

7.15. Queued translation properties

Maci nt osh:
pascal |ong ens_queued_properties(

Handl e gl obal s, /* In: Pointer to plugin instance structure */
ensTransl ator trans /* In/Qut: The translator */
| ong *sel ect ed /* In/Qut: state of this translator */

W ndows:

extern "C' long W NAPI ens_queued_properties(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
ensTransl ator trans /* In/Qut: The translator */
Il ong *sel ected /* In/Qut: state of this translator */

For queued tranglations the user selects the trandation possibly including some parameters about it, at a
different time than the trandlation is performed. This function allows the parameters to be stored with the
message while it isin the queue.

Thisfunction is optional. If it is not supplied, queued translations will be toggled on and off automatically
by Eudora. If thisisfunction is present it will be called when the user clicks the icon in the composition
bar. The function is passed the usual parameters to identify the translator and context. When called, this
function may put up a dialogue and interact with the user.

If the user has selected EMST_PREPROCESS and EMBT_SI GNATURE tranglations, and an EMST_QOQALESCED
trandation isavailable, it will be called instead as described previously. The properties of the two
translators will be passed to the EMST_COALESCED trandator concatenated and separated by acomma. The
EMBT_SI GNATURE trandlator’ s parameters will be first. This way nothing specia need be done by the
tranglators a queue time. They each set their parameters as they wish.

Parameters

€lobals

The pointer to the globals is passed back for the translator to use.
trans

&ize sizeof (ensTransl ator)
€d

The i d selects the particular translator in the plug-in for which the data is to be returned.

€ properties
These properties will get stored with the message only if sel ect ed is set. It will be passed
back the actual translation is performed in the ens_transl ate_fi | e function. The string must
be printable ASCII characters from “I” (0x41) to “~” (0x7e) and must not contain any commas
(0x2c). The string must also be less than 100 bytes. The translators may encode binary data in

the string if desired (e.g., with base64 encoding).
€ €lected

Eudora will pass the current state if this translator is selected or not. Return whether is should
be selected or not.
Return Value

EMSR_OK: All is OK
Anything Else: Eudora will log.

Eudora EMS API Page 39

7.16. Attachment Menu ltems

Maci nt osh:
pascal |ong ens_attacher_info(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP attachMenu /* CQut: The menu */
W ndows:
extern "C'" |long W NAPI ens_attacher_info(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
) emsMenuP attachMenu /* CQut: The menu */

Eudorawill place these menusin the Message->Attach sub-menu. When a user selects an attachment plug-
in, theens_att acher _hook function will be called.

Parameters

€lobals
The pointer to the globals is passed back for the translator to use.

attachMenu
€«

ID of translator to get info for.
€ desc

The text that will go in the Message->Attachment-> sub-menu.
Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will not load up the item.

Eudora EMS API Page 40

7.17. Attachment Menu Hook

Maci nt osh:

pascal |ong ens_attacher_hook(
Handl e gl obal s, /*
enmsMenuP attachMenu, [*
FSSpec *attachDir, /*
Il ong *numAttach, /*
emsDat aFi | eH *attachFil es /*

In: Pointer to plugin instance structure */
In: The nenu */

In: Location to put attachments */

Qut: Nunber of files attached */

) Qut: Nane of files witten */

W ndows:
extern "C'" long WNAPI ens_attacher
void FAR * gl obal s, /
enmsMenuP attachMenu, /
LPSTR attachDir, /
/
/

ook (
: Pointer to plugin instance structure */
. The menu */

h
n
n
n: Location to put attachments */

T
|
|
Nunmber of files attached */

long * numAttach, Qut
Qut: Name of files witten */

ensDat aFil eP ** attachFiles

e
*
*
*
*
*

)

When a user selects an attachment plug-in, the ens_at t acher _hook function will be called. The plug-in
can create a Ul to select or create afile. The path to thisfile should be returned.

Parameters

€lobals
The pointer to the globals is passed back for the translator to use.

attachMenu
€«

ID of translator to get info for.
€ttachMenu
The suggested directory to put the attached file. If the file is put into this directory, Eudora

will manage when the file is deleted.
©umAttach

The number of files that will be attached.
AttachFiles (this is an array of Attached files, so ‘n’ files can be attached)

€ size si zeof (ensTransl at or)
€ fileName

The file to be attached
Return Value

EMSR_OK: All is OK. AttachFile must contain a path to a file as well.
Anything Else: Eudora will log an error.

Eudora EMS API Page 41

7.18. Special Menu Items

Maci nt osh:
pascal |ong ens_special _i nfo(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* Qut: The nenu */
W ndows:
extern "C'" |l ong W NAPI ens_special _i nfo(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
) emsMenuP speci al Menu /* Qut: The nenu */

Eudorawill place these menus in the Message->Specia submenu. When a user selects this menu plug-in,
the ens_speci al _hook function will be called.

Parameters

€lobals

The pointer to the globals is passed back for the translator to use.
attachMenu
«

ID of translator to get info for.
€ desc

The text that will go in the Message->Attachment-> submenu.
Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will not load up the item.

Eudora EMS API Page 42

7.19. Special Menu Hook

Maci nt osh:
pascal |ong ens_speci al _hook(
Handl e gl obal s,

/* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* In:

The menu */

W ndows:
extern "C'" | ong W NAPI ens_speci al _hook(

void FAR * gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* In: The menu */

)i

Thiswill be called the special menu item is selected by the user.
Parameters
€lobals
The pointer to the globals is passed back for the translator to use.

attachMenu

€«

ID of translator to get info for.
Return Value

EMSR_OK: All is OK.
Anything Else: Eudora will log.

Eudora EMS API Page 43

8. Changes in latest APl descriptions

April 1997
Split out Attacher and Special Tool information

December 1996

Updated to V3

Parameter Blocks passed into functions instead of parameter lists
ems attacher_info, ems_attacher _hook

ems_specia_info, ems_specia_hook

removed trandator subtype

accessto al headers

EMSR_UNCHANGED allows for trandators that don’'t change data
access to content-disposition

August 20, 1996

Incremented APl version number to 2

Implemented the settings dialogue

Implemented queued_properties

Added properties parameter to ens_can_transl ate(), ens_transl ate fil e()and
ens_transl ate_buf ()

Added user name, address and configuration folder to ens_pl ugi n_i ni t () call

Changed name of ens_can_transl ate_fil e() to ens_can_trans| at e() and removed a
couple of parameters.

July 19, 1996

Clarified featuresin version 1 vs. future versions
Completed name change from tlapi to ems api
Added description of ID alocating auto responder
Magjor clarificationsto use of MIME format and type
Added about box to list loaded plug-ins
Clarifications on the translation process

More consistent terminology and notation

Specifies Windows icon format

Specifies Windows plug-in search directories

Abort return code added, plug-ins required to abort when told to do so
Moved MIME background to an appendix

Dropped the buffer version of ems_can_trandate

May 22, 1996

Removed DCES_M ME_LEAVES since it was unused and meaningless

Progress function now works.

Described some future additions

on-request trandators now checks MIME types

More documentation clarifications and rewording (MIME-related stuff)
Described planned implementation of buffer-based trandation

Significant support for Windows added (but Windows SDK isn't available yet)
Windows alocator function added

April 1996
Switch to separate Macintosh and Windows API definitions

Eudora EMS API Page 44

Removed OP code and lookup function

Added calling interface details for Mac and Windows

Added export warning for trandation authors

Page numbering and minor wording changes

Mgjor clarifications

Added module_version function

Removed de-allocator and version arguments from nodul e_i ni t
Added moduleicon argument to nodul e_i ni t

Eudora EMS API Page 45

9. References
[Component] Inside Macintosh: More Macintosh Toolbox. Addison Wesley 1993.

[DLL] Windows SDK that describes DLL's

[Crocker] CROCKER, D. Sandard for the format of ARPA Internet Text Messages. Internet
Engineering Task Force, RFC 822. 1982.

[MIME] BORENSTEIN, N. AND FREED, N. MIME: Multipart Internet Mail Extensions. Internet
Engineering Task Force, RFC 1521. 1993

[FREED] FREED, NED, ET AL. Security Multipart for MIME: multipart/signed and
multipart/encrypted. Internet Engineering Task Force, RFC 1847. 1995

[Lang] ALVESTRAND, HARALD. Tags for Identifcation of Langages. Internet Engineering Task
Force, RFC 1766. 1995

[Enriched] RESNICK, PETE AND WALKER, AMANDA. RFC-1896, The text/enriched content type.
Internet Engineering Task Force, RFC 1896. 1996

Eudora EMS API Page 46

Appendix A - A brief introduction to MIME

MIME (Multipart Internet Mail Extensions) [MIME] isthe Internet standard for describing objectsin
Internet e-mail. It is also used in other applications on the Internet such as the World-Wide Web. The

MIME standard has three main functions. It provides type tagging information for e-mail messages and their
parts. It provides aformat for representing object types and message structure, and it provides transfer
encoding for safely passing 8hit text and binary data through 7hit text-only data paths.

Cont ent - Type: MULTI PART/ M XED;, BOUNDARY="-559023410- 851401618- 831602781=: 25682"

---559023410- 851401618- 831602781=: 25682
Cont ent - Type: TEXT/ PLAIN char set =US- ASO |

This is alittle text part of the nmessage

---559023410- 851401618- 831602781=: 25682
Content - Type: | MAGE/ G F; charset =US- ASC |

Cont ent - Tr ansf er - Encodi ng: BASE64

Cont ent - Di sposi tion: attachnent; name="apipict.gif"

| C8ql DO9PTO9PTO9PTO9PTO9PTO9PTOIPTO9PTO9PTO9PTOIPTO9PTO9PTO9
eHR bRl ZOBNZXNz YWII | FNI cnZpY2VzI EFQSSBTRES gMBAWY] | gKELhe SB4
eCAXOTk 2KQOKI CAgl FRoaXMyUORLI HNLcHBvcnRz | EFQSSB2ZXJzaVi@ul DEN
G Agl CBDb3B5cm naHQIMTK5NSwgMk5N BRVUFMDONTSBI bnviDQogl CAg

---559023410- 851401618- 831602781=: 25682- -

A small example of a MIME e-mail message is shown above. It is atwo-part message with the first part
being some text and the second part being an attachment. The second part is a GIF image with base64
encoding so the binary GIF image can be passed through 7-bit channels.

Each MIME type has atop level type, a sub-type and optional parameters. The top-level content types are
relatively fixed and currently number seven: text, application, multipart, message, image, audio and video.
The multipart typeis of particular importance because it is a container for any number of MIME objects,
thus MIME allows nested structuring of message objects. There are many sub-types for each top-level type.
New sub-types can be registered as long as there is a document giving a basic description of them. The
actual type information is usually expressed as ASCII text in the form type/sub-type. The type may also
include parameters which allow specification of further details about the types. The set of parametersis
completely dependent on the sub-type, though some are common to more than one sub-type. Two common
parameters are character-set and language.

In addition to defining atyping scheme, MIME very precisely specifies data formats for representing the
type data and for creating a data object that combines the actual content data and the type information.

Because MIME objects are commonly transferred via Internet e-mail, often a 7bit text-only path, the MIME
standard also includes an encoding scheme for expressing arbitrary data as 7bit text with limited line
lengths. Thisis known as “content transfer encoding’”.

Because MIME is used to pass objects over the network between unlike computing platforms (e.g.,
Macintosh and Windows), it defines a notion of a canonical format for data objects. Thisisaformat for a
data object of a specific type that is either common to the platformsit is used on, or is defined to be the
interchange format for the abject across platforms. The most important canonical format is for text objects
because the end-of-line delimiter for text files varies between major computing platforms. Canonical text in
MIME messages has lines separated by the CRLF (carriage return and line feed) pair and does not include
CR or LF except at the end of aline.

A canonical on-the-wire formatted MIME entity is an octet stream (which may be in the process of being

transmitted, in afile on disk, or in amemory buffer) representing message objectsin their canonical format
tagged with MIME types.

Eudora EMS API Page 47

It possible to define proprietary MIME types for specific translator applications. It is also possible to go
through the standards process to define new MIME types to be used widely on the Internet. The types enable

trandators to easily and efficiently recognize data on which they wish to operate.

The reader isreferred to the MIME standards documents [MIME] for further details.

Eudora EMS API Page 48

